Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Geheimnis der Plasmaheizung ist gelüftet: RUB-Forscher entdecken Mechanismus der Energieeinkopplung

28.08.2008
Physical Review Letters: Elektronen schaukeln sich selbst auf

Das Geheimnis der Elektronenheizung in Niedertemperaturplasmen haben Bochumer Forscher vom Center of Excellence "Plasma Science and Technology" (CPST) der Ruhr-Universität gelüftet - und damit eine Antwort gefunden auf die Jahrzehnte alte Frage, warum gerade die Elektronen in diesen Plasmen so heiß sind.

Durch das nichtlineare Verhalten der Randschicht schaukelt sich der im Plasma fließende elektrische Strom selbst auf. Direkt damit verbunden ist eine Erhöhung der elektrischen Leistung und somit auch der Heizung des Plasmas. Über diesen bisher unbekannten Mechanismus, "nichtlineare Elektronen-Resonanz-Heizung" genannt, berichten die Forscher in der aktuellen Ausgabe der renommierten Fachzeitschrift "Physical Review Letters", deren Printausgabe am Freitag, 29.8. erscheint.

Grundlegendes Verständnis nach 30 Jahren

Mit ihren Forschungsergebnissen leisten die Bochumer Elektroingenieure Dr.-Ing. Thomas Mussenbrock und Prof. Dr. Ralf Peter Brinkmann (Lehrstuhl für Theoretische Elektrotechnik der RUB) zusammen mit Kollegen von der Universtity of California at Berkeley um Prof. Mike Lieberman einen Beitrag, die seit über 30 Jahren industriell eingesetzten, so genannten kapazitiven Niedertemperaturplasmen grundlegend zu verstehen.

"Seit den 70er Jahren gab es eine lebhafte fachliche Debatte über die Funktionsweise der Plasmen, die jedoch zu keinem abschließendem Ergebnis geführt hat. Insbesondere die exakte Mechanismus der Energieeinkopplung ist nicht vollständig verstanden", sagt Thomas Mussenbrock. "Seitdem man Plasmen entdeckt hat und nutzt, gibt es deutliche Unterschiede zwischen theoretischen Vorhersagen vom Verhalten des Plasmas und tatsächlichen Messungen.". Der an der Ruhr-Universität entdeckte Mechanismus liefert einen neuen Ansatz, um die Heizmechanismen in Niedertemperaturplasmen erstmals vollständig zu erklären.

Vielfältige Plasmen

Ohne Plasma kein Pentium: Mit Hilfe der elektrisch angeregten Gase lassen sich zum Beispiel Strukturen auf Mikrochips prägen, indem man Materialien im Nanometerbereich abträgt oder aufdampft. Plasmabasierte Verfahren machen heute bereits rund die Hälfte aller Prozessschritte in der Mikroelektronik aus. Nicht nur hier sind die Plasmen unentbehrlich, sondern auch in der Licht-, Umwelt- und Medizintechnik. Eine der besonderen Eigenschaften der eingesetzten Niedertemperaturplasmen sind die enthaltenen Elektronen mit Temperaturen von mehreren 10.000 Grad Celsius - im Gegensatz zu den auch vorhandenen Ionen sowie neutralen Atomen und Molekülen, die mit nahezu Zimmertemperatur vergleichsweise kalt sind (etwa im Unterschied zur Sonne als Hochtemperaturplasma). Erst dieses thermische Ungleichgewicht ermöglicht chemische Reaktionen und andere Prozesse, was Niedertemperaturplasmen so vielfältig nutzbar macht.

Der Schlüssel zur gezielten Nutzung

Die Frage, warum die Elektronen insbesondere bei sehr niedrigen Gasdrücken so heiß werden können, war bisher nicht vollständig geklärt. Theoretisch und experimentell konnten die Forscher am CPST nun die "nichtlineare Elektronen-Resonanz-Heizung" nachweisen. Basis des Mechanismus ist eine dem Plasma eigene Schwingungsneigung. Indem man eine bestimmte Schwingung anregt - ausgehend vom nichtlinearen Verhalten der so genannten Plasmarandschicht - kommt es zu einer "Aufschaukelung" des im Plasma fließenden elektrischen Stromes. Theoretische Untersuchungen haben gezeigt, dass die Elektronen-Resonanz-Heizung die Effizienz der Energieeinkopplung mehr als verdoppeln kann. Laborversuche am CPST von Prof. Uwe Czarnetzki (Fakultät für Physik und Astronomie) und Prof. Peter Awakowicz (Fakultät für Elektrotechnik und Informationstechnik) bestätigten dieses Ergebnis. Die RUB-Forscher liefern zugleich einen neuen Ansatzpunkt zu verstehen, wie man Plasmen elektrisch anregen muss, um sie möglichst effizient zu erzeugen. "Die Elektronen-Resonanz lässt sich sogar gezielt ansteuern, um den Mechanismus in Gang zu setzen", so Thomas Mussenbrock.

Titelaufnahme

Thomas Mussenbrock, Ralf Peter Brinkmann, Michael A. Lieberman, Allan J. Lichtenberg, and Emi Kawamura: Enhancement of ohmic and stochastic heating by resonance effects in capacitive radio frequency discharges. In: Physical Review Letters, 101, 085004 (2008). doi: 10.1103/PhysRevLett.101.085004 (online seit 22.8.2008)

Weitere Informationen

Dr.-Ing. Thomas Mussenbrock, Prof. Dr. Ralf Peter Brinkmann, Lehrstuhl für Theoretische Elektrotechnik, Fakultät für Elektrotechnik und Informationstechnik der RUB, Tel. 0234/32-26338, -25663, E-Mail: Thomas.Mussenbrock@rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.tet.rub.de
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fraunhofer ISE unterstützt Marktentwicklung solarthermischer Kraftwerke in der MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Erste integrierte Schaltkreise (IC) aus Plastik
17.02.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics