Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gassensoren warnen vor Schwelbränden

02.09.2015

Rauchmelder sind allgegenwärtig. Dennoch geht die Zahl der Brandopfer jährlich in die Tausende. Brandgasmelder, die auf Kohlenstoffmonoxid und Stickoxide reagieren, entdecken Brände im Frühstadium. Durch ein neues Messprinzip von Fraunhofer-Forschern werden die teuren Sensoren nun kostengünstig und damit bereit für den Massenmarkt.

Die Sterne funkeln am Himmel, die Bewohner des Hauses schlummern in ihren Betten. Soweit nichts Besonderes, doch in dieser Nacht steht ihr Leben auf dem Spiel: Ein Kabel schwelt vor sich hin, giftiges Kohlenstoffmonoxid verbreitet sich unbemerkt im Raum. Die Rauchmelder allerdings geben keinen Alarm – sie reagieren nur auf Rauch, der bei einem Schwelbrand jedoch nicht immer entsteht. Kurzum: höchste Gefahr für Schlafende.


Im Sensor des Fraunhofer IPM reagieren Farbstoffe auf Gase – und lösen so schon bei Schwelbränden Alarm aus.

© K.-U. Wudtke/Fraunhofer IPM

Kohlenstoffmonoxid zuverlässig erkannt

Gassensoren könnten die Bewohner rechtzeitig wecken und somit Leben retten. Etwa der Sensor, den Forscher am Fraunhofer-Institut für Physikalische Messtechnik IPM in Freiburg entwickeln: Er erkennt einen Brand nicht über den Rauch, sondern über das entstehende Kohlenstoffmonoxid. Auch bei Stickstoffdioxid, das etwas später im Brandverlauf entsteht, schlägt er Alarm. Kleinste Mengen der Gase reichen dabei aus. »Die Sensoren sind sehr empfindlich. Sie reagieren also schon sehr früh im Brandverlauf, schließlich zählt jede Sekunde«, erläutert Dr. Carolin Pannek, Wissenschaftlerin am IPM.

Zwar sind solche lebensrettenden Kohlenstoffmonoxid-Sensoren heute bereits erhältlich, für den Massenmarkt jedoch zu teuer. Darüber hinaus sind sie wartungsaufwändig und verbrauchen viel Strom. Handelsübliche, preisgünstige Halbleiter-Gassensoren können aber beispielsweise nicht zwischen verschiedenen Gasen unterscheiden. Nicht so der neuartige Sensor der IPM-Forscher: »Er reagiert gezielt auf Kohlenstoffmonoxid und Stickstoffdioxid, bei allen anderen Gasen bleibt er ruhig. Mit einem Rolle-zu-Rolle-Verfahren können wir die Sensoren sehr günstig herstellen und somit für den Verbraucher erschwinglich machen«, bestätigt Pannek.

Das ist vor allem dem Farbstoff zu verdanken, dem Herzstück der Sensoren. So wie in jedes Schloss nur ein ganz bestimmter Schlüssel passt, reagiert jeder dieser Farbstoffe auf ein ganz spezielles Gas – im Sensor gibt es daher einen Farbstoff für Kohlenstoffmonoxid, einen weiteren für Stickstoffdioxid. Das Prinzip: Eine kleine LED strahlt blaues Licht in einen Wellenleiter, in dem das Licht auf einem Zickzackkurs bis zum anderen Ende läuft. Dort trifft es auf einen Detektor.

Der Wellenleiter ist mit einem Polymer beschichtet, in das Farbstoffe gemischt sind. Ist die Luft im Raum unauffällig, ist der Farbstoff im Polymer lila – er nimmt nur wenig blaues Licht auf. Sprich: Es gelangt viel blaues Licht zum Detektor. Ist dagegen Kohlenstoffmonoxid in der Raumluft, ändert der Farbstoff seine Farbe: Er wird gelb. Der gelbe Farbstoff nimmt mehr blaues Licht auf – die Lichtmenge am Detektor sinkt. Wird dabei ein Grenzwert unterschritten, löst dies den Alarm aus. Um auch Stickstoffdioxid nachweisen zu können, integrieren die Forscher in den Sensor noch einen zweiten Wellenleiter mit einem anderen Farbstoff.

Kaum teurer als ein Rauchmelder

Die Forscher achten darauf, dass der Sensor sich im Massenverfahren möglichst kostengünstig herstellen lässt – schließlich möchte kaum jemand deutlich tiefer in die Tasche greifen müssen als für einen herkömmlichen Rauchmelder, auch wenn der Gassensor eine erheblich höhere Sicherheit bietet. »Der Sensor wird, fertigt man ihn in Massen, in einem ähnlichen Preisrahmen liegen wie Rauchmelder – und wesentlich günstiger sein als die wenigen am Markt verfügbaren Brandgasmelder«, ist sich Pannek sicher.

Für die Brandgas-Sensoren setzen die Wissenschaftler auf die gleichen Komponenten wie beim Rauchmelder, ergänzt um den Lichtwellenleiter. Eine Elektronik gibt die Schwelle an, ab der der Sensor Alarm schlagen soll.

Für die Herstellung dieser Komponenten haben die Forscher gemeinsam mit einem Industriepartner ein Rolle-zu-Rolle-Verfahren entwickelt: Ähnlich wie beim Zeitungsdruck werden dabei 15 000 Messsysteme auf einer Endlosrolle gefertigt. Das Verfahren ist sowohl massentauglich als auch preiswert. Bis die Gassensoren in Wohn- und Schlafzimmern hängen werden, wird es sicherlich noch ein paar Jahre dauern.

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2015/September/gassensore...

Holger Kock | Fraunhofer Forschung kompakt

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften