Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fusionsanlage Wendelstein 7-X erzeugt erstes Wasserstoff-Plasma

04.02.2016

Bundeskanzlerin schaltet Plasma ein / Beginn des wissenschaftlichen Experimentierbetriebs

Am 3. Februar 2016 wurde in der Fusionsanlage Wendelstein 7-X im Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald das erste Wasserstoff-Plasma erzeugt. Damit hat – nach dem Start der Anlage mit einem Helium-Plasma Anfang Dezember 2015 – der wissenschaftliche Experimentierbetrieb begonnen. Wendelstein 7-X, die weltweit größte Fusionsanlage vom Typ Stellarator, soll die Kraftwerkseignung dieses Bautyps untersuchen.


Das erste Wasserstoff-Plasma in Wendelstein 7-X. Es dauerte eine Viertel Sekunde und erreichte – bei moderater Plasmadichte – eine Temperatur von rund 80 Millionen Grad Celsius.

Foto: IPP

Seit dem Betriebsstart am 10. Dezember 2015 hat Wendelstein 7-X mehr als 300 Entladungen mit dem Edelgas Helium erzeugt. Sie wurden vor allem zum Reinigen des Plasmagefäßes genutzt. Je sauberer die Gefäßwand, desto höher stieg die Plasmatemperatur, zuletzt bis auf sechs Millionen Grad. Außerdem wurden Plasmaheizung und Datenaufnahme getestet sowie die ersten Messapparaturen zur Untersuchung des Plasmas in Betrieb genommen, komplexe Instrumente wie Röntgenspektrometer, Interferometer, Laserstreuungs- und Videodiagnostik.

„Damit ist alles bereit für den nächsten Schritt“, erklärte Projektleiter Professor Dr. Thomas Klinger: „Wir wechseln von Plasmen aus Helium zu Wasserstoff, unserem eigentlichen Untersuchungsobjekt“.

Das erste Wasserstoff-Plasma – eingeschaltet am 3. Februar 2016 im Rahmen eines Festakts mit zahlreichen Gästen aus Wissenschaft und Politik – markiert den Beginn des wissenschaftlichen Experimentierbetriebs an Wendelstein 7-X. Auf Knopfdruck von Bundeskanzlerin Dr. Angela Merkel verwandelte ein 2-Megawatt-Puls der Mikrowellenheizung eine winzige Menge Wasserstoff-Gas in ein ultradünnes, extrem heißes Wasserstoff-Plasma. Dabei lösen sich die Elektronen von den Kernen der Wasserstoffatome.

Im magnetischen Käfig von Wendelstein 7-X eingeschlossen, schweben die geladenen Teilchen berührungsfrei vor den Wänden der Plasmakammer. „Mit einer Temperatur von 80 Millionen Grad und einer Dauer von einer Viertel-Sekunde hat das erste Wasserstoff-Plasma in der Maschine unsere Erwartungen vollständig erfüllt“, sagt Dr. Hans-Stephan Bosch, dessen Bereich für den Betrieb von Wendelstein 7-X zuständig ist.

Die jetzt begonnene Experimentierphase wird bis Mitte März dauern. Danach wird das Plasmagefäß geöffnet, um Kohlenstoffkacheln zum Schutz der Gefäßwände zu montieren und einen sogenannten „Divertor“ zum Abführen von Verunreinigungen: „So ausgerüstet, werden höhere Heizleistungen, höhere Temperaturen und längere Entladungen bis zu zehn Sekunden möglich“, erläutert Professor Klinger. Stufenweise sind weitere Ausbauten geplant, bis in etwa vier Jahren 30 Minuten lange Entladungen erzeugt werden können und bei voller Heizleistung von 20 Megawatt überprüft werden kann, ob Wendelstein 7-X seine Optimierungsziele erfüllt.

Hintergrund: Wendelstein 7-X und die Fusionsforschung

Ziel der Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln. Ähnlich wie die Sonne soll es aus der Verschmelzung von Atomkernen Energie gewinnen. Weil das Fusionsfeuer erst bei Temperaturen über 100 Millionen Grad zündet, darf der Brennstoff – ein dünnes Wasserstoffplasma – nicht in Kontakt mit kalten Gefäßwänden kommen. Von Magnetfeldern gehalten, schwebt er nahezu berührungsfrei im Inneren einer Vakuumkammer. Für den magnetischen Käfig haben sich zwei verschiedene Bauweisen durchgesetzt, Tokamak und Stellarator. Mit dem Stellarator Wendelstein 7-X in Greifswald und dem Tokamak ASDEX Upgrade in Garching werden beide Anlagentypen im IPP untersucht.

Gegenwärtig traut man nur einem Tokamak – dem internationalen Testreaktor ITER, der in weltweiter Zusammenarbeit in Cadarache aufgebaut wird – ein energielieferndes Plasma zu. Wendelstein 7-X, die weltweit größte Fusionsanlage vom Typ Stellarator, wird keine Energie erzeugen. Trotzdem soll die Anlage beweisen, dass auch Stellaratoren kraftwerkstauglich sind. Mit Wendelstein 7-X soll die Qualität des Plasmaeinschlusses erstmals der eines Tokamaks ebenbürtig werden. Und mit 30 Minuten langen Entladungen soll die Anlage das wesentliche Plus der Stellaratoren vorführen, die Fähigkeit zum Dauerbetrieb. Dagegen können Tokamaks ohne aufwändige Zusatzmaßnahmen lediglich in Pulsen arbeiten.

Die Montage von Wendelstein 7-X begann im April 2005: Ein Ring aus 50 supraleitenden, etwa 3,5 Meter hohen Magnetspulen ist das Kernstück der Anlage. Ihre speziellen Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen der Abteilung „Stellarator-Theorie“ und ihrer über zehnjährigen Suche nach einem besonders wärmeisolierenden magnetischen Käfig. Die Spulen sind auf ein stählernes Plasmagefäß aufgefädelt und von einer ringförmigen Stahlhülle umschlossen.

In ihrem luftleer gepumpten Innenraum werden die Spulen mit flüssigem Helium auf Supraleitungstemperatur bis nahe an den absoluten Nullpunkt abgekühlt. So verbrauchen sie nach dem Einschalten kaum Energie. Der von ihnen erzeugte Magnetfeldkäfig hält im Inneren des Plasmagefäßes das Forschungsobjekt der Wissenschaftler in Schwebe, das 30 Kubikmeter füllende ultra-dünne Plasma.

Die von Bund, Land und EU getragenen Investitionskosten für Wendelstein 7-X beliefen sich auf 370 Millionen Euro. Die Bauteile fertigten Firmen in ganz Europa; Aufträge im Wert von weit über 70 Millionen gingen an Unternehmen in der Region. Zahlreiche Forschungseinrichtungen im In- und Ausland waren am Aufbau der Anlage beteiligt. S

o trug im Rahmen der Helmholtz-Gemeinschaft Deutscher Forschungszentren das Karlsruher Institut für Technologie die Verantwortung für die Mikrowellen-Plasmaheizung; das Forschungszentrum Jülich baut Messgeräte und fertigte die aufwändigen Verbindungen der supraleitenden Magnetspulen. Den Einbau übernahmen Spezialisten der Polnischen Akademie der Wissenschaften in Krakau. Die US-amerikanischen Fusionsinstitute in Princeton, Oak Ridge und Los Alamos trugen u.a. mit magnetischen Zusatzspulen und Messgeräten zur Ausrüstung von Wendelstein 7-X bei.

Weitere Informationen:

http://www.ipp.mpg.de/de/aktuelles/presse/pi/2016/02_16

Isabella Milch | Max-Planck-Institut für Plasmaphysik

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie