Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freiburger Wissenschaftler optimieren Wirkungsgrad und Kosten von Modulen

26.05.2011
Neues Technologiecenter am Fraunhofer ISE schlägt Brücke zur PV-Industrie

Auf dem Weg von der Solarzelle zum Solarmodul sinkt der Wirkungsgrad. Optische Verluste entstehen durch den Zuwachs an inaktiver Fläche, durch Reflexion am Glas und durch Absorption in den Deckschichten. Hinzu kommen elektrische Verluste auf Grund von Serienwiderständen in den Zell- und Stringverbindern. Gewinne durch Einkapselungseffekte können diese Verluste nicht ausgleichen, so dass der Wirkungsgrad eines Moduls typischerweise um 10-15 % unter dem Zellwirkungsgrad liegt.


60-Zellen-Modul (1592 mm x 962 mm) mit 15,2 % Wirkungsgrad. Mit effizienter Modultechnologie reduzierten Wissenschaftler des Fraunhofer ISE den Wirkungsgradverlust von der Zelle zum Modul auf 5 %. ©Fraunhofer ISE


Blick in das Photovoltaik Modul-Technologiecenter (MTC) am Fraunhofer ISE. ©Fraunhofer ISE

Legt man einen Modulpreis von 1,60 €/Wp zu Grunde, entspricht dies einer Größenordnung von 50 € pro Modul. Um diese Verluste zu minimieren und die Effizienz von Solarmodulen zu verbessern, hat das Fraunhofer ISE in Freiburg ein Technologiecenter aufgebaut, das eng mit der PV-Industrie kooperiert.

Das neue Photovoltaik Modul-Technologiecenter (MTC) bietet eine große Bandbreite an Prozess- und Analyseplattformen für Solarmodule. Diese Infrastruktur ermöglicht umfassende Produktentwicklung, Prozessentwicklung und Materialqualifizierung. Die Wissenschaftler können aus dem Laborstadium heraus den direkten Weg zu aussagekräftigen Modulstückzahlen und -formaten einschlagen. Für die Untersuchung und Optimierung von Lötprozessen sowie deren Abstimmung auf neue Solarzellen nutzen die Fraunhofer-Forscher diverse experimentelle Lötplattformen.

Die präzise Regelung der Lötprozesse erlaubt hochaufgelöste Parameterstudien. Als Referenz für die Prozessentwicklung und die Bemusterung mit Zellstrings dient ein vollautomatischer Tabber-Stringer. Für die Fertigung von Modulen stehen Laminatoren mit Nutzflächen bis 1700 mm x 1000 mm zur Verfügung.

Umfassende Charakterisierungen in allen Fertigungsstufen ermöglichen eine zielgenaue Produkt- und Prozessoptimierung. Am Anfang stehen Eingangsuntersuchungen an den Materialien, von der Zelle über Zellverbinder und Folien bis hin zum Glas. Die Qualität der Fügestellen kann im Photovoltaik Modul- Technologiecenter durch Benetzungsuntersuchungen, Schälprüfungen, Schliffbilder, beschleunigte Alterung und hochauflösende Röntgenaufnahmen mit einer Auflösung von 100 nm geprüft werden. Über stufenweise Charakterisierung können Leistung und Integrität der Zelle vom Lieferzustand über die Verstringung und Einkapselung bis in das beschleunigt gealterte Modul verfolgt werden. So gelingt die Eingrenzung von Fehlerquellen.

Die experimentellen Methoden werden ergänzt durch eine Palette an Rechenmodellen. Dazu gehören Finite-Elemente- Modelle (FEM) ebenso wie analytische Modelle. Die Wissenschaftler untersuchen damit mechanische Spannungen, elektrische Verluste und die optische Effizienz von Modulaufbauten. Als besonders zielführend erweist sich die differenzierte Analyse von Gewinn- und Verlustfaktoren in Solarmodulen.

»Im Rahmen unserer Forschungs- und Entwicklungsarbeiten der vergangenen Monate ist es uns gelungen, aus kommerziellen Solarzellen mit einem nominellen Wirkungsgrad von 16,0 % ein Modul aus insgesamt sechzig Solarzellen im Format 1592 mm x 962 mm zu bauen, dessen Wirkungsgrad 15,2 % beträgt. Damit gingen nur noch 5 % des ursprünglichen Zellwirkungsgrads verloren«, so Dr. Harry Wirth, Bereichsleiter Photovoltaische Module, Systeme und Zuverlässigkeit. Bei den eingebauten Zellen handelt es sich um gängige multikristalline Siliciumsolarzellen, wie sie heute im Gigawatt-Maßstab in PV-Kraftwerken eingesetzt werden. Die Reduktion des Wirkungsgradverlusts konnte durch eine Kombination von Maßnahmen erzielt werden.

Ein schlanker Modulaufbau mit einer speziellen Randversiegelung verringert die inaktive Fläche. Hinzu kommen Verbesserungen in der optischen und elektrischen Effizienz. Die Präzisionsmessung des optimierten Moduls wurde am akkreditierten CalLab PV Modules des Fraunhofer ISE mit einer Genauigkeit von +/- 2,3 % relativ durchgeführt. »Als Nächstes streben wir an, den Wirkungsgradverlust von der Solarzelle zum Modul nochmals annähernd zu halbieren, auf einen Wert von 2,5 %«, so Wirth.

Das Photovoltaik Modul-Technologiecenter (MTC):

Das Photovoltaik Modul-Technologiecenter (MTC) wurde mit Unterstützung des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMU) realisiert. Es bietet Zell- und Materialherstellern eine einzigartige Plattform zur Qualifizierung ihrer Materialien, während Anlagenhersteller Unterstützung bei der Prozessentwicklung erwarten können. Modulhersteller schließlich greifen bei der Optimierung ihres Produkts auf die Erfahrung der Wissenschaftler und Ingenieure zurück. Das MTC schließt die Lücke zwischen Laborentwicklung und industrieller Produktionstechnologie, indem es die Verarbeitung aussagekräftiger Stückzahlen und Formate erlaubt. Kunden und Projektpartner profitieren von der räumlichen Nähe und engen Zusammenarbeit mit weiteren Forschungs- und Prüfeinrichtungen des Fraunhofer ISE. So können Zellchargen im Photovoltaik Technologie Evaluationscenter (PV-TEC) produziert und nach der Modulherstellung im TestLab PV Modules geprüft werden.

Informationsmaterial:
Fraunhofer ISE, Presse und Public Relations
Telefon +49 761 4588-5150
Fax +49 761 4588-9342
info@ise.fraunhofer.de
Fraunhofer-Institut für
Solare Energiesysteme ISE
Heidenhofstraße 2
79110 Freiburg
Presse und Public Relations
Karin Schneider
Telefon +49 761 4588-5150
Fax +49 761 4588-9342
info@ise.fraunhofer.de
Ansprechpartner für weitere Informationen:
Marco Tranitz
Phone +49 761 4588-5193
Fax +49 761 4588-9193
marco.tranitz@ise.fraunhofer.de

Karin Schneider | Fraunhofer ISE
Weitere Informationen:
http://www.ise.fraunhofer.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Neue Sensortechnik für E-Auto-Batterien
08.12.2016 | Ruhr-Universität Bochum

nachricht Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten
08.12.2016 | Institut für Solarenergieforschung GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie