Fraunhofer-Forscher entwickeln Hochdrucksensoren für Extremtemperaturen

Hochtemperatur-Sensor für Extrusionsanlagen: SOI-Chips (links) und Gehäuse (rechts). Fraunhofer IZM

Der SOI-Sensor kommt vor allem in Extrusionsanlagen zur Verarbeitung von Kunststoffen zum Einsatz. Bei diesen Anlagen ist es notwendig, festzustellen, wann eine Form vollständig mit Plastik gefüllt ist. Hier kommt der SOI-Sensor ins Spiel: Er misst präzise den Druck und sendet ein Signal, sobald Gegendruck durch das Plastik besteht.

SOI steht für Silicon-on-Insulator und bezeichnet einen Sensor, der mit einer Sperrschicht aus Siliziumdioxid versehen ist, die für komplette elektrische Isolation sorgt. In der SOL-Schicht (Silicon-Over-Layer), die sich über der Sperrschicht befindet, sind alleinstehende Piezowiderstände in die Silikonmembran eingeätzt.

Herkömmliche MEMS-Drucksensoren nutzen hingegen die Sperrschicht zwischen positiver und negativer Dotierung – den so genannten p-n-Übergang – als Isolation. Bei diesem elektrischen Bauelement fließt der Strom nur in eine Richtung. MEMS steht für Micro-Electro-Mechanical Systems und bezeichnet miniaturisierte Bauteile, die mechanische und elektronische Informationen verarbeiten. MEMS-Sensoren können im Gegensatz zum SOI-Sensor nur für einen Temperaturbereich bis ca. 125°C eingesetzt werden.

Der Sensor, an dessen Entwicklung auch die TU Berlin beteiligt war, funktioniert dank der SOI-Technologie ohne den Zusatz von Flüssigkeiten wie Öl, welches in herkömmlichen Sensoren häufig zum Einsatz kommt. Der Vorteil dabei: Die Sensorsignale werden nicht durch die temperaturbedingte Ausdehnung der Flüssigkeiten verfälscht.

Durch den Verzicht auf teure und komplizierte Fülltechnologien beugt der SOI-Sensor zudem Umweltbelastungen vor und stellt eine Alternative für die Zukunft dar, da z.B. Öl und Quecksilber in manchen Produkten verboten werden sollen.

Auch Zeit und Material können im Spritzgussprozess durch die genaue Messweise des SOI-Sensors eingespart werden, was ihn im Vergleich zu klassischen Sensoren effizienter macht. Ausschlaggebend für den Nutzen dieses Sensors ist jedoch, dass er den hohen Temperaturen und rauen Bedingungen bei der Verwendung von flüssigem Kunststoff standhält.

Um Umwelteinflüssen vorzubeugen, befindet sich der SOI-Chip in einem Keramikgehäuse ohne Verklebungen, an dem eine Stahlmembran angebracht ist, welche wiederum mit einem Stahlzylinder verbunden ist. Der Sensor ist passgenau eingebaut und wird daher auch als ‚floating‘ bezeichnet: Er ‚schwebt‘ quasi im Gehäuse zwischen den elektrischen Kontakten, wodurch weitere Fülltechnologien überflüssig werden. Die elektrische Verbindung zwischen dem SOI-Chip und dem Keramikgehäuse wird durch Drahtbonden erreicht.

In Zukunft sollen Hochdrucksensoren bis zu 600 °C und mehr aushalten können. Dafür muss jedoch das Silizium ersetzt werden, da es ab Temperaturen von über 400 °C selbstleitend wird. Eine Lösung hierfür stellt Silizium-Carbid dar, das bei hohen Temperaturen über bessere elektrische Eigenschaften verfügt. Die Forschung daran findet bereits statt. Das Fraunhofer IZM nimmt bei der angewandten Forschungsarbeit im Hochtemperaturbereich eine Vorreiterrolle ein und kooperiert mit der Firma Gefran SPA, die auch die Entwicklung von Hochtemperatursensoren in Auftrag gegeben hat.

https://www.izm.fraunhofer.de/de/news_events/tech_news/fraunhofer-forscher-entwi… Link zur Pressemitteilung.
https://www.izm.fraunhofer.de/de/abteilungen/high_density_interconnectwaferlevel… Link zu weiteren Informationen zur Sensorentwicklung am Fraunhofer IZM.

Media Contact

Eva Baumgärtner Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer