Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der TU Darmstadt berechnen Folgen von Blitzschlägen am Computer

19.10.2011
Unter Einsatz großer Rechnerkapazitäten simulieren Wissenschaftler der TU Darmstadt im Rahmen des Forschungsschwerpunktes Computational Engineering Blitzschläge am Computer.

Ihr Ziel ist es, die Auswirkungen der Blitze auf Menschen und Maschinen besser zu verstehen und vorhersagen zu können.

Das Szenario wirkt bedrohlich: Ein Blitz schlägt elf Meter neben einem Spaziergänger in den Boden; ob er den Einschlag überleben wird, hängt nicht zuletzt davon ab, wie groß seine Schrittlänge ist. Aber zum Glück spielt sich die Szene nicht im Freien ab und der Wanderer ist kein echter Mensch, sondern ein Computermodell. Auch der Blitz existiert nur in Form von Bits und Bytes.

Programmiert haben ihn Forscher um Professor Thomas Weiland und Professorin Irina Munteanu vom Institut für die Theorie Elektromagnetischer Felder (TEMF) der TU Darmstadt. „Wir wollen in Menschen hineinschauen, in deren Nähe ein Blitz einschlägt“, sagt Munteanu. Weil es unmöglich sei, den Strom zu messen, der durch einen Menschen fließt, könne nur ein Computermodell Aufschluss darüber liefern, welchem Stromfluss etwa sein Herz ausgesetzt ist, wenn neben ihm der Blitz einschlägt. Außerdem simulieren die Forscher Blitze, die in ein voll besetztes Flugzeug oder in ein Auto mit Schiebedach einschlagen. Dabei zeigte sich beispielsweise, dass im Kopfbereich des Fahrers eine deutlich höhere Feldstärke auftritt als bei einem Auto mit einem herkömmlichen Dach aus Blech.

Jeder Blitzschlag besteht aus Hunderten von Billionen Zahlenwerten

Die Methoden, die das Team um Weiland entwickeln, sind für Ingenieure hochinteressant. „Sie können sie beispielsweise nutzen, um Erdungsanlagen zu optimieren“, sagt Munteanu. Denn diese müssten bei genauer Kenntnis der Stromflüsse nicht mehr überdimensioniert werden. Außerdem könnten die Simulationen helfen, die Bordelektronik von Flugzeugen wirksam vor einem Blitzeinschlag abzuschirmen. Auch andere Quellen von elektromagnetischen Feldern kann das Team um Weiland prinzipiell simulieren  etwa Handystrahlung im Flugzeug. „Würde man deren Stärke präzise kennen, könnte man das Cockpit wirkungsvoll abschirmen“, so Munteanu. Die Ingenieurin glaubt, dass die Simulationen Entwicklungsprozesse beschleunigen können. „Der Computer kann zwar Messungen nicht vollständig ersetzen“, sagt Munteanu. „Aber durch Simulationen spart man sich den Bau vieler Prototypen, die sich nach Messungen als ungeeignet entpuppen würden“, so die Forscherin. Das bedeute das Einsparen von Zeit und Geld.

Die Darmstädter Forscher betreten mit ihren Simulationen Neuland, denn ihre Modelle sind äußerst detailliert. Sie bauen ihre Modelle gewissermaßen aus virtuellen Legosteinen auf. Für ein Auto gibt es Legosteine aus Blech oder Kunststoff, für einen Menschen solche aus Knochen oder Gehirnmasse. Um ein verlässliches und genaues Ergebnis zu bekommen, müssen die Legosteine sehr klein gewählt werden, sodass alle Details erfasst werden. Das bedeutet, dass ein komplexes Modell aus äußerst vielen dieser Bausteine besteht  das Modell des Flugzeuges samt Passagieren etwa aus einer Milliarde. Für jeden einzelnen dieser Legosteine löst der Rechnercluster des Instituts die Gleichungen des Elektromagnetismus. Damit nicht genug: Um einen Vorgang im Zeitablauf zu simulieren, muss er die gleichen Rechnungen für jeden Zeitpunkt wieder und wieder ausführen. „Insgesamt müssen Hunderte von Billionen Zahlenwerte berechnet, gespeichert und grafisch dargestellt werden“, sagt Munteanu.

Damit so eine Rechnung nicht jahrelang dauert, müssen die Forscher tief in die Trickkiste greifen. Die Rechenergebnisse müssen nach jedem simulierten Zeitpunkt möglichst effizient zwischen den rund 172 Rechnern des Clusters ausgetauscht werden, was geschicktes Programmieren erfordert. Die Simulationen laufen zudem nicht auf herkömmlichen Prozessoren, sondern auf leistungsfähigeren Grafikkarten. „Um das machen zu können, brauchen wir fundierte Kenntnisse sowohl der Hardware als auch der Software“, sagt Munteanu. Diese Kenntnisse werden sie auch in Zukunft einsetzen, um neue und spannende Szenarien zu simulieren.

Schlüsseltechnologie Computational Engineering

Computational Engineering (CE) ist eine junge, stark interdisziplinär ausgerichtete Wissenschaft zur computergestützten Modellierung, Simulation, Analyse und Optimierung komplexer Ingenieuranwendungen und natürlicher Phänomene. Methoden des CE haben sich in den letzten Jahren zur Schlüsseltechnologie in allen Ingenieurbereichen entwickelt.

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de/vorbeischauen/publikationen/forschung/index_3136.de.jsp

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht »ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern
18.10.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Intelligentes Lademanagement entwickelt – Forschungsprojekt ePlanB abgeschlossen
18.10.2017 | Forschungsstelle für Energiewirtschaft e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise