Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der FH Aachen entwickeln 3400 Grad heißen Plasma-Laser

01.12.2011
Das Team um Forscher Prof. Dr. Holger Heuermann vom Fachbereich Elektrotechnik und Informationstechnik der FH Aachen hat einen Plasmastrahler entwickelt, der dank einer gebündelten Emission des Plasmas einen bis zu 3400 Grad Celsius heißen Strahl erzeugt. Typische Anwendungsbereiche sind die Reinigung von Oberflächen, etwa in industriellen Produktionsprozessen, aber auch Trenn- und Verbindungsschweißen sowie Medizintechnik.

Gartenschlauch statt Gießkanne: Wenn Kräfte gebündelt werden, steigt die Wirkung. Das Prinzip, das etwa vom Laser schon lange bekannt ist, wird jetzt auch auf Plasma angewandt. Das Team um Forscher Prof. Dr. Holger Heuermann vom Fachbereich Elektrotechnik und Informationstechnik der FH Aachen hat einen Plasmastrahler entwickelt, der dank einer gebündelten Emission des Plasmas einen bis zu 3400 Grad Celsius heißen Strahl erzeugt. Typische Anwendungsbereiche sind die Reinigung von Oberflächen, etwa in industriellen Produktionsprozessen, aber auch Trenn- und Verbindungsschweißen sowie Medizintechnik.


Der Plasmalaser im Einsatz
Foto: FH Aachen / Arnd Gottschalk

Die technologische Grundlage ist das sogenannte Mikrowellenplasma. Mit dem Begriff Plasma bezeichnet man in der Physik ein Gas, das teilweise oder voll¬ständig aus freien Ladungsträgern, also Ionen oder Elektronen, besteht.

99 Prozent der sichtbaren Materie im Universum besteht aus Plasma. Natürliche Plasmen auf der Erde findet man etwa in Blitzen, auch Flammen sind plasmaähnlich. Beim Mikrowellenplasma erfolgt die Gasentladung, die zur Plasma-Erzeugung benötigt wird, durch Mikrowellen, also bei einer Frequenz von 2,45 Gigahertz.

Bei der Neuentwicklung der FH-Wissenschaftler wird das Prozessgas durch eine dünne Kanüle, die zugleich als Elektrode fungiert, bis zur Spitze des Strahlers geleitet, wo dann das Plasma in gebündelter Form erzeugt wird. „Damit können wir die Vorteile dieser Technologie erstmals konsequent ausnutzen“, sagt Prof. Heuermann. Derzeit können Temperaturen von bis zu 3400 Grad Celsius erreicht werden – genug, um dünne Bleche zu zerschneiden. Der Plasmalaser weist ungefähr die Größe eines Kugelschreibers auf, der Strahl ist etwa ein bis zwei Zentimeter lang und hat einen Durchmesser von einem Millimeter.

Bei der Erzeugung des Plasmas wird mit Edelgasen und normaler Umgebungsluft gearbeitet, direkte Emissionen entstehen nicht. Dank einer eingebauten Kühlung erhitzt der Plasmalaser sich kaum, er ist praktisch verschleißfrei und äußerst langlebig – allesamt Eigenschaften, die ihn von konventionellen Lasern oder Plasmastrahlern, die mit der Bogenentladungstechnik arbeiten, unterscheidet.

„Diese Technologie wird Karriere machen“, ist Prof. Heuermann überzeugt.

An der Entwicklung war auch der FH-Student Torsten Finger entscheidend beteiligt, der seine Masterarbeit zum Thema Plasmastrahler geschrieben hat. Weitere Anwendungsbereiche sind überall dort denkbar, wo sehr hohe Temperaturen und Emissionsfreiheit kombiniert werden. Das reicht von Großindustrieanlagen – etwa im Bereich Müllverbrennung – bis hin zu Krankenhäusern oder Labors, wo Reinräume benötigt werden.

Team Pressestelle | idw
Weitere Informationen:
http://www.fh-aachen.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Weniger Schadstoffe im Heizkessel: Smartes Verbrennungskonzept vermindert Schadstoffemissionen
27.06.2017 | Deutsches Biomasseforschungszentrum

nachricht Wie Protonen durch eine Brennstoffzelle wandern
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie