Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entwickeln blitzartige Alternative zum Löten von Elektronikbauteilen

25.02.2016

Auf den Mikroprozessoren von Smartphones befinden sich zahlreiche winzige Lötpunkte. Sie verbinden die integrierten Schaltkreise mit dem Elektroniksystem und leiten den Strom hindurch. Da Mobilgeräte heute immer flacher, aber auch leistungsfähiger werden, können sie bei intensivem Betrieb erheblich erhitzen. Dann werden ihre winzigen Lötpunkte zur Schwachstelle im System. Materialforscher der Universität des Saarlandes haben jetzt mit Kollegen in Helsinki ein neues Material entdeckt, das solche Bauelemente und Werkstoffe durch eine blitzartige chemische Reaktion zusammenzufügen kann. Die Forschungsergebnisse wurden online in den Scientific Reports des US-Fachmagazins Nature veröffentlicht.

Elektronische Bauelemente werden immer kleiner und müssen gleichzeitig vielfältig miteinander vernetzt werden. In flachen Mobilgeräten etwa müssen Millionen von kleinsten Rechen- und Speichereinheiten im Nanometerbereich angeordnet werden.


Erläuterung der Infografik: Schematische Darstellung der physikalischen Prozesse während der selbstfortschreitenden Reaktion. (a) Nach lokaler Zündung bewegt sich die Reaktionsfront durch die Multilage und setzt Wärme frei. (b) Unmittelbar vor der Reaktionsfront findet atomare Diffusion senkrecht und Wärmeleitung parallel zu den Grenzflächen statt.


Professor Frank Mücklich

Steve Welter

„Die elektronischen Schaltungen in Handys oder Tablets sind ein äußerst komplexes, dreidimensionales Gebilde, das wie ein zentrales Nervensystem alle Funktionen steuert“, sagt Frank Mücklich, Professor für Funktionswerkstoffe der Universität des Saarlandes und Leiter des Steinbeis-Forschungszentrums für Werkstofftechnik (MECS).

Die elektronischen Bauelemente werden bisher in Öfen bei Temperaturen von einigen hundert Grad Celsius miteinander verlötet. Die Legierungen der Lötpunkte müssen bei mäßiger Hitze schmelzen und wieder erstarren, um die empfindlichen Schaltkreise nicht zu zerstören. „Wird das Smartphone jedoch später im intensiven Betrieb zu heiß, beginnen sich diese Lötpunkte durch Korrosion zu zersetzen, das Gerät fällt dann rasch aus“, erklärt Mücklich.

Gemeinsam mit Wissenschaftlern in Helsinki hat sein Team daher nach anderen Möglichkeiten gesucht, um Metalle in der Dimension von wenigen Nanometern miteinander zu verbinden. „Wir legen dafür mehrere hauchdünne Schichten von Aluminium und Ruthenium übereinander, die tausendmal flacher sind als ein menschliches Haar. Wenn darauf ein kurzer intensiver Laserstrahl trifft, wird in der Nanometer-Schicht eine hohe Energiemenge freigesetzt, die sich mit einer Geschwindigkeit von zehn Metern pro Sekunde ausbreitet und bis zu 2000 Grad Celsius erreichen kann“, erklärt Mücklich.

Durch die kurzzeitige enorme Hitze werden die benachbarten Bauteile miteinander fest verbunden, die integrierten Schaltkreise aber nicht beschädigt. Das dabei entstehende Material heißt Ruthenium-Aluminid. Es verbindet die Bauteile als dünne Zwischenschicht, so wie bisher die Lötpunkte. Durch die chemische Reaktion, bei der abrupt viel Energie frei wird, nimmt es jedoch eine exakte, gleichmäßige Kristallstruktur an.

Dies konnten die Materialforscher sowohl in verschiedenen Experimenten als auch durch eine detaillierte Simulation der Atombewegungen zeigen. „Diese homogene Schicht verbindet die Materialien fest miteinander und bleibt wegen des hohen Schmelzpunktes im Gegensatz zur Lötverbindung auch dann noch stabil, wenn sich das ganze System stark erwärmen sollte“, erläutert der Materialwissenschaftler.

„Im Vergleich zu Nickel-Aluminid, das von anderen Forschern bereits untersucht wurde, hat unser Verfahren den Vorteil, dass die Zwischenschicht durch die Reaktion nicht spröde wird und damit auch mechanisch äußerst belastbar ist“, sagt Frank Mücklich. Da man ohne die gleichmäßige Hitze eines Schmelzofens auskommt, lassen sich mit der neuen Methode empfindliche Elektronik-Bauteile auf engstem Raum miteinander verbinden.

„Durch den Laserimpuls können wir die chemische Reaktion der Ruthenium-Aluminium-Schicht an wenigen Punkten auslösen und so steuern, dass auf winzigen Flächen kurzzeitig eine starke Hitze entsteht und nur wenige Mikrometer weiter normale Zimmertemperaturen herrschen“, nennt Mücklich als weiteren Vorteil. Diese flexible Steuerung mache das Verfahren auch für Bauteile interessant, bei denen Metalle mit Kunststoffen oder Verbundmaterialien verbunden werden müssen, etwa in der Automobil- und Flugzeugindustrie.

„Man könnte die verbindende Schicht zum Beispiel so aufbauen, dass die Wärme sowohl das Metall als auch den sich völlig anders verhaltenden Verbundwerkstoff mit der jeweils passenden Energiemenge aufschmilzt. Dann könnte man, wie wir vermuten, beide blitzartig miteinander verschweißen“, erklärt der Saarbrücker Forscher.

In weiteren Untersuchungen soll es nun darum gehen, die Komponenten von Ruthenium- und Aluminiumatomen geometrisch so aufzubauen, dass man alle gewünschten Eigenschaften wie auf Knopfdruck abrufen kann. „Wir gehen davon aus, dass man damit viele hitzeempfindliche Bauteile schonend und gleichzeitig extrem rasch zusammenfügen kann. Es wird aber auch dabei helfen, ganz unterschiedliche Materialien miteinander zu verbinden, bei denen man bisher mit Schweißen, Löten oder Kleben keine befriedigenden Ergebnisse erzielen konnte“, sagt Frank Mücklich.

Die Forschungsergebnisse wurden als Open Access-Artikel online in den Scientific Reports von Nature veröffentlicht. An der Publikation haben Materialwissenschaftler der Universität des Saarlandes und der Universität in Helsinki sowie des Paul-Scherrer-Instituts in der Schweiz mitgewirkt:

www.nature.com/articles/srep19535 

Hintergrund zur Saarbrücker Materialforschung

Die Materialwissenschaft und Werkstofftechnik auf dem Campus der Universität des Saarlandes zählt mit rund 300 Wissenschaftlern zu den fünf bundesweit führenden Standorten auf diesem Gebiet. Die derzeit 13 Professoren an der Universität sind eng vernetzt mit den Forschern am Leibniz-Institut für Neue Materialien (INM), dem Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren (IZFP) und dem Steinbeis-Forschungszentrum Material Engineering Center Saarland (MECS).

Fragen beantwortet:

Prof. Dr. Frank Mücklich
Lehrstuhl für Funktionswerkstoffe der Universität des Saarlandes
Steinbeis-Forschungszentrum Material Engineering Center Saarland (MECS)
Tel. 0681/302-70500
Mail: muecke@matsci.uni-sb.de

Weitere Informationen:

http://www.nature.com/articles/srep19535
http://www.fuwe.uni-saarland.de
http://www.mec-s.de

Friederike Meyer zu Tittingdorf | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics