Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entwickeln blitzartige Alternative zum Löten von Elektronikbauteilen

25.02.2016

Auf den Mikroprozessoren von Smartphones befinden sich zahlreiche winzige Lötpunkte. Sie verbinden die integrierten Schaltkreise mit dem Elektroniksystem und leiten den Strom hindurch. Da Mobilgeräte heute immer flacher, aber auch leistungsfähiger werden, können sie bei intensivem Betrieb erheblich erhitzen. Dann werden ihre winzigen Lötpunkte zur Schwachstelle im System. Materialforscher der Universität des Saarlandes haben jetzt mit Kollegen in Helsinki ein neues Material entdeckt, das solche Bauelemente und Werkstoffe durch eine blitzartige chemische Reaktion zusammenzufügen kann. Die Forschungsergebnisse wurden online in den Scientific Reports des US-Fachmagazins Nature veröffentlicht.

Elektronische Bauelemente werden immer kleiner und müssen gleichzeitig vielfältig miteinander vernetzt werden. In flachen Mobilgeräten etwa müssen Millionen von kleinsten Rechen- und Speichereinheiten im Nanometerbereich angeordnet werden.


Erläuterung der Infografik: Schematische Darstellung der physikalischen Prozesse während der selbstfortschreitenden Reaktion. (a) Nach lokaler Zündung bewegt sich die Reaktionsfront durch die Multilage und setzt Wärme frei. (b) Unmittelbar vor der Reaktionsfront findet atomare Diffusion senkrecht und Wärmeleitung parallel zu den Grenzflächen statt.


Professor Frank Mücklich

Steve Welter

„Die elektronischen Schaltungen in Handys oder Tablets sind ein äußerst komplexes, dreidimensionales Gebilde, das wie ein zentrales Nervensystem alle Funktionen steuert“, sagt Frank Mücklich, Professor für Funktionswerkstoffe der Universität des Saarlandes und Leiter des Steinbeis-Forschungszentrums für Werkstofftechnik (MECS).

Die elektronischen Bauelemente werden bisher in Öfen bei Temperaturen von einigen hundert Grad Celsius miteinander verlötet. Die Legierungen der Lötpunkte müssen bei mäßiger Hitze schmelzen und wieder erstarren, um die empfindlichen Schaltkreise nicht zu zerstören. „Wird das Smartphone jedoch später im intensiven Betrieb zu heiß, beginnen sich diese Lötpunkte durch Korrosion zu zersetzen, das Gerät fällt dann rasch aus“, erklärt Mücklich.

Gemeinsam mit Wissenschaftlern in Helsinki hat sein Team daher nach anderen Möglichkeiten gesucht, um Metalle in der Dimension von wenigen Nanometern miteinander zu verbinden. „Wir legen dafür mehrere hauchdünne Schichten von Aluminium und Ruthenium übereinander, die tausendmal flacher sind als ein menschliches Haar. Wenn darauf ein kurzer intensiver Laserstrahl trifft, wird in der Nanometer-Schicht eine hohe Energiemenge freigesetzt, die sich mit einer Geschwindigkeit von zehn Metern pro Sekunde ausbreitet und bis zu 2000 Grad Celsius erreichen kann“, erklärt Mücklich.

Durch die kurzzeitige enorme Hitze werden die benachbarten Bauteile miteinander fest verbunden, die integrierten Schaltkreise aber nicht beschädigt. Das dabei entstehende Material heißt Ruthenium-Aluminid. Es verbindet die Bauteile als dünne Zwischenschicht, so wie bisher die Lötpunkte. Durch die chemische Reaktion, bei der abrupt viel Energie frei wird, nimmt es jedoch eine exakte, gleichmäßige Kristallstruktur an.

Dies konnten die Materialforscher sowohl in verschiedenen Experimenten als auch durch eine detaillierte Simulation der Atombewegungen zeigen. „Diese homogene Schicht verbindet die Materialien fest miteinander und bleibt wegen des hohen Schmelzpunktes im Gegensatz zur Lötverbindung auch dann noch stabil, wenn sich das ganze System stark erwärmen sollte“, erläutert der Materialwissenschaftler.

„Im Vergleich zu Nickel-Aluminid, das von anderen Forschern bereits untersucht wurde, hat unser Verfahren den Vorteil, dass die Zwischenschicht durch die Reaktion nicht spröde wird und damit auch mechanisch äußerst belastbar ist“, sagt Frank Mücklich. Da man ohne die gleichmäßige Hitze eines Schmelzofens auskommt, lassen sich mit der neuen Methode empfindliche Elektronik-Bauteile auf engstem Raum miteinander verbinden.

„Durch den Laserimpuls können wir die chemische Reaktion der Ruthenium-Aluminium-Schicht an wenigen Punkten auslösen und so steuern, dass auf winzigen Flächen kurzzeitig eine starke Hitze entsteht und nur wenige Mikrometer weiter normale Zimmertemperaturen herrschen“, nennt Mücklich als weiteren Vorteil. Diese flexible Steuerung mache das Verfahren auch für Bauteile interessant, bei denen Metalle mit Kunststoffen oder Verbundmaterialien verbunden werden müssen, etwa in der Automobil- und Flugzeugindustrie.

„Man könnte die verbindende Schicht zum Beispiel so aufbauen, dass die Wärme sowohl das Metall als auch den sich völlig anders verhaltenden Verbundwerkstoff mit der jeweils passenden Energiemenge aufschmilzt. Dann könnte man, wie wir vermuten, beide blitzartig miteinander verschweißen“, erklärt der Saarbrücker Forscher.

In weiteren Untersuchungen soll es nun darum gehen, die Komponenten von Ruthenium- und Aluminiumatomen geometrisch so aufzubauen, dass man alle gewünschten Eigenschaften wie auf Knopfdruck abrufen kann. „Wir gehen davon aus, dass man damit viele hitzeempfindliche Bauteile schonend und gleichzeitig extrem rasch zusammenfügen kann. Es wird aber auch dabei helfen, ganz unterschiedliche Materialien miteinander zu verbinden, bei denen man bisher mit Schweißen, Löten oder Kleben keine befriedigenden Ergebnisse erzielen konnte“, sagt Frank Mücklich.

Die Forschungsergebnisse wurden als Open Access-Artikel online in den Scientific Reports von Nature veröffentlicht. An der Publikation haben Materialwissenschaftler der Universität des Saarlandes und der Universität in Helsinki sowie des Paul-Scherrer-Instituts in der Schweiz mitgewirkt:

www.nature.com/articles/srep19535 

Hintergrund zur Saarbrücker Materialforschung

Die Materialwissenschaft und Werkstofftechnik auf dem Campus der Universität des Saarlandes zählt mit rund 300 Wissenschaftlern zu den fünf bundesweit führenden Standorten auf diesem Gebiet. Die derzeit 13 Professoren an der Universität sind eng vernetzt mit den Forschern am Leibniz-Institut für Neue Materialien (INM), dem Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren (IZFP) und dem Steinbeis-Forschungszentrum Material Engineering Center Saarland (MECS).

Fragen beantwortet:

Prof. Dr. Frank Mücklich
Lehrstuhl für Funktionswerkstoffe der Universität des Saarlandes
Steinbeis-Forschungszentrum Material Engineering Center Saarland (MECS)
Tel. 0681/302-70500
Mail: muecke@matsci.uni-sb.de

Weitere Informationen:

http://www.nature.com/articles/srep19535
http://www.fuwe.uni-saarland.de
http://www.mec-s.de

Friederike Meyer zu Tittingdorf | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Kompakte Rangierfelder für RJ45-Module
25.09.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Sicherungsklemmen für unterschiedliche Einsatzgebiete
18.09.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy