Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flüssigkeiten untersuchen mit Druckwellen

17.03.2014

Von der Gelenksflüssigkeit im Knie bis zum Schmiermittel im Motor: Mit einem neuartigen Sensor, der in einem Gemeinschaftsprojekt zwischen der TU Wien, der JKU Linz und der Donau Universität Krems entwickelt wurde, kann man Flüssigkeiten mit akustischen Wellen untersuchen.

Honig fließt anders als Wasser. Die entscheidende Größe, die man benötigt, um das Fließverhalten von Flüssigkeiten anzugeben, ist die Viskosität – ein Maß für ihre Zähigkeit.


Ein Transmitter (Mitte) und zwei Receiver (oben und unten) messen die Druckwellenausbreitung in einer Flüssigkeitskammer und bestimmen so die Viskosität der Flüssigkeit. TU Wien

Nun wurde eine ganz neue Art von Sensoren entwickelt, die mit Hilfe von Schallwellen die Viskosität von Flüssigkeiten messen. So lassen sich wichtige Aussagen über die Flüssigkeit ableiten, zum Beispiel ob ein Schmiermittel in einer Maschine noch funktioniert oder schon gewechselt werden muss. Wichtig ist das für die Qualitätskontrolle in der Industrie, aber auch für medizinische Untersuchungen.

Scherwellen und Druckwellen

Normalerweise misst man Viskosität, indem man eine dünne Platte durch eine Flüssigkeit bewegt – und zwar entlang der Plattenebene, so als würde man mit der flachen Hand eine Wasseroberfläche entlangstreichen. Je nach Viskosität bewegen sich unterschiedlich weit von der Platte entfernte Flüssigkeitsschichten unterschiedlich schnell mit der Platte mit.

Diesen Viskositätskoeffizienten bezeichnet man als Scherviskosität. Allerdings haben Flüssigkeiten auch noch einen zweiten Viskositätskoeffizienten, der in Sensoranwendungen bisher seltsamerweise kaum Beachtung fand: Die Druckviskosität.

Die Druckviskosität misst man, indem man eine Platte vor und zurück bewegt – als würde man mit der flachen Hand auf die Wasseroberfläche schlagen. Dabei entstehen akustische Wellen, die sich in der Flüssigkeit ausbreiten. Je höher die Viskosität, umso stärker werden die akustischen Wellen abgedämpft.

Im Zuge des Forschungsprojekts, das vom FWF unterstützt wurde, untersuchte man zunächst das Konzept der Druckwellen-Viskositätsmessung mit Hilfe von Rechenmodellen und Computersimulationen, dann wurden daraus verschiedene Sensorkonzepte und optimale Rechenalgorithmen zur Messdatenauswertung entwickelt.

Neue Methode mit großen Vorteilen

„Bisher hat man Viskosität meist mit großen, klobigen Instrumenten gemessen, die kompliziert zu bedienen und außerdem auch recht teuer sind“, sagt Franz Keplinger. Zwar gibt es mittlerweile auch miniaturisierte Varianten, doch auch sie haben entscheidende Nachteile.
„Man kann mikroakustische Strukturen in einer Flüssigkeit schwingen lassen – doch dabei regt man bloß Scherwellen an, die oft nur wenige hundert Nanometer tief in die Flüssigkeit eindringen“, erklärt Franz Keplinger.

Solche Messungen sind daher extrem empfindlich auf Verschmutzungen am Sensor – die Wellen dringen möglicherweise gar nicht in die zu analysierende Flüssigkeit ein sondern messen bloß die Schmutzablagerung. Außerdem werden solche Sensoren bei sehr hohen Frequenzen im Megahertzbereich betrieben, bei denen sich die Viskosität ganz anders verhalten kann als im Niederfrequenzbereich, an dem man eigentlich interessiert ist.

Die typische Eindringtiefe von Druckwellen hingegen beträgt mehrere Meter. Ein Druckwellen-Sensor kann also die Flüssigkeitseigenschaften über eine längere Strecke hinweg untersuchen. Die Abschwächung der Welle auf ihrem Weg durch das Fluid kann sehr genau gemessen werden, zum Beispiel indem man in einem Fluidresonator stehende Wellen untersucht.

Anwendungsideen für die Druckwellensensoren gibt es viele: Man könnte sie direkt in Maschinen einbauen, um Flüssigkeitseigenschaften in Echtzeit zu messen – etwa in der Nahrungsmittelindustrie. Aber auch für die Medizin ist die Druckwellen-Viskositätsmessung äußerst interessant: Das Team forscht nun an der Frage, wie man mit miniaturisierten Messgeräten winzigste Mengen von Gelenksflüssigkeit untersuchen kann.

Rückfragehinweis:
Prof. Franz Keplinger
Institut für Sensor- und Aktuatorsysteme
Technische Universität Wien
Gusshausstraße 25-29, 1040 Wien
T: +43 (1) 58801 - 366 40
franz.keplinger@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle
17.08.2017 | Universität Potsdam

nachricht Lasersensoren LAH-G1 – Optische Abstandssensoren mit Messwertanzeige
15.08.2017 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie