Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flüssigkeiten untersuchen mit Druckwellen

17.03.2014

Von der Gelenksflüssigkeit im Knie bis zum Schmiermittel im Motor: Mit einem neuartigen Sensor, der in einem Gemeinschaftsprojekt zwischen der TU Wien, der JKU Linz und der Donau Universität Krems entwickelt wurde, kann man Flüssigkeiten mit akustischen Wellen untersuchen.

Honig fließt anders als Wasser. Die entscheidende Größe, die man benötigt, um das Fließverhalten von Flüssigkeiten anzugeben, ist die Viskosität – ein Maß für ihre Zähigkeit.


Ein Transmitter (Mitte) und zwei Receiver (oben und unten) messen die Druckwellenausbreitung in einer Flüssigkeitskammer und bestimmen so die Viskosität der Flüssigkeit. TU Wien

Nun wurde eine ganz neue Art von Sensoren entwickelt, die mit Hilfe von Schallwellen die Viskosität von Flüssigkeiten messen. So lassen sich wichtige Aussagen über die Flüssigkeit ableiten, zum Beispiel ob ein Schmiermittel in einer Maschine noch funktioniert oder schon gewechselt werden muss. Wichtig ist das für die Qualitätskontrolle in der Industrie, aber auch für medizinische Untersuchungen.

Scherwellen und Druckwellen

Normalerweise misst man Viskosität, indem man eine dünne Platte durch eine Flüssigkeit bewegt – und zwar entlang der Plattenebene, so als würde man mit der flachen Hand eine Wasseroberfläche entlangstreichen. Je nach Viskosität bewegen sich unterschiedlich weit von der Platte entfernte Flüssigkeitsschichten unterschiedlich schnell mit der Platte mit.

Diesen Viskositätskoeffizienten bezeichnet man als Scherviskosität. Allerdings haben Flüssigkeiten auch noch einen zweiten Viskositätskoeffizienten, der in Sensoranwendungen bisher seltsamerweise kaum Beachtung fand: Die Druckviskosität.

Die Druckviskosität misst man, indem man eine Platte vor und zurück bewegt – als würde man mit der flachen Hand auf die Wasseroberfläche schlagen. Dabei entstehen akustische Wellen, die sich in der Flüssigkeit ausbreiten. Je höher die Viskosität, umso stärker werden die akustischen Wellen abgedämpft.

Im Zuge des Forschungsprojekts, das vom FWF unterstützt wurde, untersuchte man zunächst das Konzept der Druckwellen-Viskositätsmessung mit Hilfe von Rechenmodellen und Computersimulationen, dann wurden daraus verschiedene Sensorkonzepte und optimale Rechenalgorithmen zur Messdatenauswertung entwickelt.

Neue Methode mit großen Vorteilen

„Bisher hat man Viskosität meist mit großen, klobigen Instrumenten gemessen, die kompliziert zu bedienen und außerdem auch recht teuer sind“, sagt Franz Keplinger. Zwar gibt es mittlerweile auch miniaturisierte Varianten, doch auch sie haben entscheidende Nachteile.
„Man kann mikroakustische Strukturen in einer Flüssigkeit schwingen lassen – doch dabei regt man bloß Scherwellen an, die oft nur wenige hundert Nanometer tief in die Flüssigkeit eindringen“, erklärt Franz Keplinger.

Solche Messungen sind daher extrem empfindlich auf Verschmutzungen am Sensor – die Wellen dringen möglicherweise gar nicht in die zu analysierende Flüssigkeit ein sondern messen bloß die Schmutzablagerung. Außerdem werden solche Sensoren bei sehr hohen Frequenzen im Megahertzbereich betrieben, bei denen sich die Viskosität ganz anders verhalten kann als im Niederfrequenzbereich, an dem man eigentlich interessiert ist.

Die typische Eindringtiefe von Druckwellen hingegen beträgt mehrere Meter. Ein Druckwellen-Sensor kann also die Flüssigkeitseigenschaften über eine längere Strecke hinweg untersuchen. Die Abschwächung der Welle auf ihrem Weg durch das Fluid kann sehr genau gemessen werden, zum Beispiel indem man in einem Fluidresonator stehende Wellen untersucht.

Anwendungsideen für die Druckwellensensoren gibt es viele: Man könnte sie direkt in Maschinen einbauen, um Flüssigkeitseigenschaften in Echtzeit zu messen – etwa in der Nahrungsmittelindustrie. Aber auch für die Medizin ist die Druckwellen-Viskositätsmessung äußerst interessant: Das Team forscht nun an der Frage, wie man mit miniaturisierten Messgeräten winzigste Mengen von Gelenksflüssigkeit untersuchen kann.

Rückfragehinweis:
Prof. Franz Keplinger
Institut für Sensor- und Aktuatorsysteme
Technische Universität Wien
Gusshausstraße 25-29, 1040 Wien
T: +43 (1) 58801 - 366 40
franz.keplinger@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Neuro-Robotik ermöglicht Querschnittsgelähmten selbstständig zu essen
07.12.2016 | Eberhard Karls Universität Tübingen

nachricht Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik
05.12.2016 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie