Flexibler Näherungssensor macht Oberflächen intelligent

Mit seiner elastischen Form lässt sich der Näherungssensor flexibel auf großen Oberflächen anbringen. Fraunhofer IPA, Foto: Rainer Bez

Auf den ersten Blick wirkt der Näherungssensor nicht besonders spektakulär: eine dünne, elastische Silikonschicht, auf der schwarze viereckige Flächen aufgedruckt sind. Was aussieht wie Farbe, sind aber unzählige mikroskopisch kleine Kohlenstoffnanoröhren, die Menschen oder Gegenstände lokalisieren können.

»Der Näherungssensor erkennt alles, was elektrisch leitfähig ist. Sobald sich ein Objekt nähert, ändert sich das elektrische Feld«, weiß IPA-Wissenschaftler Florian Bodny. Das sieht man aber erst, wenn man ihn an eine Auswertungselektronik anschließt. Sobald eine Hand oder ein metallisches Objekt darüber gehalten wird, leuchtet die Lampe auf. Dabei wird nicht nur das Objekt erkannt, sondern auch sondern auch dessen Position, wenn die Fläche aus mehreren Sensorelementen besteht.

Hohe Flexibilität und geringe Herstellungskosten

Bei ihrem Sensor haben die IPA-Wissenschaftler eine Kombination aus Silikon und CNT eingesetzt. Der Aufbau erfolgt schichtweise. Auf eine Lage Silikon folgt eine Lage Silikon-CNT-Gemisch. Beide Materialien sind elastisch, flexibel und weisen eine hohe Umweltstabilität auf.

Der Sensor lässt sich damit auch auf großen Oberflächen anbringen. Als Herstellungsverfahren wählten die Experten den Siebdruck. Die Methode sei schnell und komme ohne aufwendige Vorbereitungen aus, bestätigt Bodny. Weiterhin sei es möglich, große Flächen zu bedrucken und die Sensoren in großen Stückzahlen herzustellen.

»Der Sensor lässt sich einfach anbringen, ist extrem vielseitig und kommt mit geringen Materialkosten aus«, sagt Bodny. In einer Versuchsreihe haben die IPA-Experten analysiert, welche Parameter für die Genauigkeit der Detektion entscheidend sind. Dabei fanden sie heraus, dass die Konzentration des Aktivmaterials den größten Einfluss hat. An zweiter Stelle steht die Schichtdicke, gefolgt von der Fläche des Sensors. »Um ein Objekt auf 8 Millimeter Entfernung zu detektieren, sind beispielsweise drei Druckschichten, eine Konzentration von 1,5 Massenprozent und 36 cm² Fläche notwendig«, erläutert Bodny.

Partner zur Umsetzung gesucht

Für den Näherungssensor kommen vielseitige Anwendungen in Frage. Denkbar sei er als künstliche Haut bei Robotern. »Serviceroboter können zum Beispiel die Hand ausstrecken, wenn sie eine Person erkennen«, weiß Bodny. Auch im Bereich »Smart Home« gibt es viele Einsatzmöglichkeiten, etwa für Lampen oder Türen, die an- oder aufgehen, sobald ein Mensch davor steht.

Mit seiner Elastizität ist der Sensor außerdem zur Unfallprävention geeignet, beispielsweise auf Arbeits- und Schutzkleidung. Die Wissenschaftler überlegen auch, ihn in der Medizintechnik für Exoskelette einzusetzen. »Der Sensor ist ab sofort erhältlich. Wir suchen noch nach Partnern aus Industrie und Forschung, die ihn testen und weiterentwickeln wollen«, erklärt Bodny.

Bei dem Näherungssensor handelt es sich um ein Beispiel für gedruckte Elektronik. Anwendungen aus diesem Bereich werden allgemein dazu verwendet, Oberflächen intelligent zu machen. Im Zeitalter von Industrie 4.0, bei der Dinge mit Intelligenz ausgestattet werden und als cyberphysische Systeme miteinander kommunizieren, werden solche Sensoren immer wichtiger. Oberflächen mit Näherungssensor fungieren dabei als Mensch-Maschine-Schnittstelle (Human-Machine-Interface).

https://www.ipa.fraunhofer.de/de/presse/presseinformationen/2017-07-04_gedruckte…

Media Contact

Jörg Walz Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer