Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energieversorgung der Zukunft - Sonderforschungsbereich „Oxyflame“ am 1. Oktober gestartet

02.10.2013
Nicht erst seit der Energiewende wird dem Ziel, das klimaschädliche Treibhausgas CO2 zu reduzieren, hohe Priorität eingeräumt.

Um die Energie- und Stromversorgung jedoch auch zukünftig sichern zu können, muss ein Teil des Primärenergiebedarfs weiterhin aus fossilen Energieträgern wie Kohle und Erdgas gedeckt werden. Die „Oxyfuel-Technologie“ stellt für die Realisierung dieser Ziele eine vielversprechende Methode dar.

Im Unterschied zu konventionellen Kraftwerken wird der Brennstoff bei der „Oxyfuel-Technologie“ nicht mit Luft, sondern mit einem Gemisch aus Sauerstoff und rezirkuliertem Rauchgas verbrannt. Im Abgas finden sich dann lediglich die beiden Hauptbestandteile Wasserdampf und Kohlenstoffdioxid. Letzteres kann nun mit deutlich weniger Aufwand abgeschieden werden.

Bei dem von der Deutschen Forschungsgemeinschaft (DFG) finanzierten Sonderforschungsbereich/Transregio 129 „Oxyflame“, bei dem die TU Darmstadt, die RWTH Aachen und die Ruhr-Universität Bochum kooperieren, geht es um die Entwicklung eines grundlegenden Verständnisses der Oxyfuel-Verbrennung von Kohlestaub. Ziel der Forscher ist es, zunächst die Mechanismen und mathematischen Modelle zur Beschreibung von Teilprozessen zu erfassen. Auf Basis der Teilprozessmodellierung soll dann die verlässliche numerische Simulation der gesamten Feuerung ermöglicht werden. Diese kann wiederum dazu genutzt werden, die Technologie zu optimieren und verbesserte Brenner sowie Feuerräume für Oxyfuel-Kraftwerke auszulegen.

Oxyfuel-Forschung an der TU Darmstadt

An der TU Darmstadt sind drei Fachgebiete mit der Erforschung dieser Prozesse in verschiedenen miteinander verzahnten Teilprojekten beschäftigt. Diese sind das Fachgebiet für Reaktive Strömungen und Messtechnik (RSM) unter Leitung von Prof. Dr. Andreas Dreizler, das Fachgebiet für Energie- und Kraftwerkstechnik (EKT) von Prof. Dr.-Ing. Johannes Janicka sowie das Fachgebiet für Energiesystemtechnik (EST), welches von Prof. Dr.-Ing. Bernd Epple geleitet wird. Weitere Teilprojektleiter der Institute sind Dr.-Ing. Jochen Ströhle (EST), Prof. Dr. Amsini Sadiki (EKT) und Prof. Dr. Volker Ebert (RSM).

Am EST beschäftigen sich Wissenschaftler im Rahmen eines Teilprojekts mit den physikalisch-chemischen Grundlagen und dem Verständnis über die chemische Reaktionskinetik von Chlor- und Schwefelverbindungen. Chlorverbindungen sind verstärkt in Biomasse zu finden und können wegen ihrer stark korrosiven Eigenschaften Probleme in Kraftwerken bereiten. Das Vorhandensein von Schwefel in Brennstoffen ist wiederum für die Reinigung des Rauchgases von großer Relevanz. Da bei der Oxyfuel-Verbrennung Rauchgas in den Brennraum rezirkuliert wird, kann es zu einer Aufkonzentration dieser Spezies kommen.

Bei den am EST durchgeführten Experimenten wird die Chlor- und Schwefelchemie untersucht. In einem weiteren Teilprojekt, das am RSM sowie am Lehrstuhl für Wärme- und Stoffübertragung in Aachen unter Leitung von Prof. Dr.-Ing. Reinhold Kneer durchgeführt wird, geht es um die experimentelle Untersuchung und Charakterisierung von Oxyfuel-Kohlestaubbrennern. Die Herausforderung besteht hier darin, die gekoppelten partikeldynamischen und chemischen Prozesse mit hoher Raum- und Zeitauflösung zu erfassen. Um dies zu erreichen, werden moderne laserdiagnostische Methoden eingesetzt.

Ergebnisse aus Teilprojekten fließen ein

Die Absorptionsspektroskopie ist eine laserdiagnostische Methode, die für die Anforderungen in Kohlestaubbrennern besonders geeignet ist. Um die Konzentration von wichtigen Spezies und die Temperatur der Strömung zuverlässig messen zu können, wird am RSM dieses Messverfahren von Prof. Dr. Volker Ebert in einem weiteren Teilprojekt auf die Oxyfuel-Verbrennung angepasst. Langfristiges Ziel ist die Nutzbarmachung dieses Verfahrens für industrielle Prozesse.

Die numerische Modellierung der Turbulenz-Chemie-Wechselwirkung ist ebenfalls Inhalt eines Teilprojekts mit Darmstädter Beteiligung. Am EKT werden hierzu Modelle und Methoden entwickelt, die zuverlässig die komplexe Interaktion von Partikeltransport, Turbulenz, Gasphasen- und Partikelverbrennung beschreiben sollen. Für die Validierung der Modelle sind experimentelle Ergebnisse erforderlich, die bei den anderen Teilprojekten gewonnen werden.

Mit „Oxyflame“ ist am 1. Oktober ein umfangreiches Projekt in die erste Förderperiode gestartet. Die RWTH Aachen, die Ruhr-Universität Bochum und die TU Darmstadt bringen gemeinsam ihre Kompetenzen ein, um die zukünftige Energie- und Stromversorgung auf eine fundierte Basis zu stellen. Insgesamt kann das Forschungsvorhaben mit weiteren Förderperioden eine Gesamtlaufzeit von zwölf Jahren erreichen.

Ansprechpartner:
Robert Knappstein,
Tel. 06151/16-5186,
E-Mail: knappstein@ekt.tu-darmstadt.de
MI-Nr. 90/2013, Robert Knappstein

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Innovatives Messmodul zur Bestimmung der Inaktivierungsleistung von UV-Hygienisierungsanlagen
22.01.2018 | Institut für Bioprozess- und Analysenmesstechnik e.V.

nachricht TU Wien entwickelt neue Halbleiter-Bearbeitungstechnik
22.01.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics