Energiequellen der Zukunft: Neuartige Diodenlaser für Ultrahochleistungslaser-Anwendungen

Leistungsstarke Laserbarren - CryoLaser<br><br>Die im Projekt CryoLaser am FBH entwickelten Laserbarren wurden im Hinblick auf eine extrem hohe Leistungsdichte optimiert. Damit eignen sie sich besonders für neuartige Ultrahochleistungslaser-Anwendungen - wie etwa die laserinduzierte Fusion zur Energiegewinnung.<br>© FBH/schurian.com<br>

Hochleistungs-Laseranwendungen der Zukunft – darauf zielen aktuelle Entwicklungen zu Diodenlasern aus dem Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH).

Weltweit arbeiten Forscherteams zurzeit an einer neuen Generation von Ultrahochleistungslasern. Sie sind Arbeitsmittel für die Grundlagenforschung, für neuartige Anwendungen in der Medizin und nicht zuletzt Basis für die laserinduzierte Fusion. Als saubere und hocheffiziente Energiequellen könnten Großanlagen, die diese Technologie nutzen, künftig die Energieversorgung der Menschheit sichern. Ultrahochleistungslaser erfordern nicht nur extrem leistungsfähige, sondern auch in riesiger Stückzahl kostengünstig hergestellte Diodenlaser.

Das entsprechende Design und die Technologie optimiert das FBH im Rahmen des Leibniz-Projektes CryoLaser. Eine höhere Leistungsdichte ist dabei unerlässlich, um die Kosten pro Photon zu senken – so verringert sich der Materialeinsatz. Dazu müssen Wirkungsgrad und Materialqualität erheblich verbessert werden. Das neuartige Konzept nutzt innovative Designs, die für den Laserbetrieb unter dem Gefrierpunkt (-73°C / 200 K) optimiert sind. In diesem Temperaturbereich lässt sich die Leistungsfähigkeit von Diodenlasern deutlich steigern.

Aktuelle Ergebnisse aus CryoLaser präsentiert der FBH-Wissenschaftler Paul Crump in seinem eingeladenen Vortrag am 12. Juni bei der CLEO in San Jose, USA. Das hochaktuelle Thema wurde vom Veranstalter zudem für die zentrale Presseveranstaltung ausgewählt. Die Ergebnisse konzentrieren sich auf Laserbarren im Wellenlängenbereich von 930 bis 970 nm.

Derartige Diodenlaser sind die Grundbausteine für Pumpquellen von Ytterbium-dotierten Kristallen in Großlaseranlagen, in denen ein gepulster Lichtstrahl mit Peta-Watt Leistungsspitze im Pikosekunden-Bereich erzeugt wird. Die einzelnen Laserbarren dieser Pumpquellen emittieren 1,2 Millisekunden lange optische Pulse mit einer bisher typischen Leistung im Bereich von 300 bis 500 Watt. Erste Tests von FBH-Laserbarren bei -50°C ergaben weltweite Bestwerte von 1,7 Kilowatt (kW) Spitzenleistung pro Barren, das entspricht einer Pulsenergie von je 2 Joule.

Bislang konnte diese Pumpenergie nur durch Bündelung der Strahlung von mindestens fünf Laserbarren erreicht werden. Aktuell arbeitet das FBH-Team an der Steigerung des elektro-optischen Wirkungsgrades von derzeit 50% bei der angestrebten Betriebsleistung von 1,6 kW pro Barren auf Werte über 80%.
Das FBH deckt in diesem Forschungsprojekt die komplette Wertschöpfungskette ab, vom Design bis zu ersten Prototypen, die an Partner geliefert werden. Wie bereits in früheren Forschungsarbeiten werden die Pumpquellen gemeinsam mit den weltweit führenden Gruppen evaluiert, die sich mit Ultrahochleistungslasern für die laserinduzierte Kernfusion beschäftigen: LIFE in den USA, HiPER in Europa.

Weitere Informationen zu CryoLaser & CLEO
www.fbh-berlin.de/sondervorhaben/cryolaser
Publikation: P. Crump, C. Frevert, H. Wenzel, F. Bugge, S. Knigge, G. Erbert and G. Tränkle “Cryolaser: Innovative Cryogenic Diode Laser Bars Optimized for Emerging Ultra-high Power Laser Applications,” Paper JW1J.2, Proc. CLEO, San Jose, USA (2013).
Fachkonferenz und Messe CLEO (9.-14.06.2013) in San Jose, USA
http://www.cleoconference.org
Petra Immerz
Communication & Public Relations Manager
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de
www.fbh-berlin.de
http://twitter.com/FBH_News
Hintergrundinformationen – das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Innovationen in den gesellschaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Lasersysteme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwendungsfelder reichen von der Medizintechnik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satellitenkommunikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunksysteme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikrowellenplasmaquellen mit Niederspannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 260 Mitarbeiter und hat einen Etat von 22 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. und ist Mitglied der Leibniz-Gemeinschaft.

Media Contact

Petra Immerz FBH Berlin

Weitere Informationen:

http://www.fbh-berlin.de

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer