Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen-Spins unter Strom – Neues Verfahren zur Bestimmung der Spin-Bahn-Wechselwirkung

17.07.2014

Ein internationales Forscherteam der Universitäten in Regensburg und Sendai (Japan) hat ein neues Verfahren entwickelt, um die Stärke der Spin-Bahn-Wechselwirkung in Halbleitern zu bestimmen.

Die Spin-Bahn-Wechselwirkung ist die Kraft, die auf den Spin – den Eigendrehimpuls von Elektronen – einwirkt. Die Kontrolle dieser Kraft ist von zentraler Bedeutung für die Entwicklung einer Spinelektronik, die in Zukunft die Wirkungsweise von Transistoren revolutionieren könnte.

Die Ergebnisse der Forscher wurden vor wenigen Tagen in der Fachzeitschrift „Nature Nanotechnology“ veröffentlicht (DOI 10.1038/nnano.2014.128).

In herkömmlichen Transistoren nutzt man ausschließlich die Ladung von Elektronen, um den Stromfluss zu kontrollieren und auf diese Weise logische Operationen auszuführen. Dem gegenüber versucht man in der Spinelektronik, auch den Eigendrehimpuls der Elektronen – ihren Spin – zu nutzen, indem man die Spineigenschaften der Elektronen manipuliert.

Der Elektronen-Spin kann als Pirouette des Elementarteilchens um die eigene Achse verstanden werden, wobei die Bewegung mit einem magnetischen Moment verknüpft ist. Demnach weist das Elektron Eigenschaften ähnlich einer Kompassnadel auf. Die Quantenphysik lässt bei dieser winzigen Kompassnadel allerdings nur zwei Ausrichtungen – parallel (spin-up) oder anti-parallel (spin-down) zum Magnetfeld – zu.

In Halbleitern ergeben sich nochmals besondere Bedingungen: Hier unterliegen Elektronen wegen der Krsitallgitterstruktur der Halbleiter oder aufgrund einer von außen angelegten elektrischen Spannung dem Einfluss von elektrischen Feldern.

Die elektrischen Felder wirken wiederum auf die sich bewegenden Elektronen-Spins wie Magnetfelder, an denen sich diese ausrichten (Spin-Bahn-Felder). Die damit verbundene Kraft wird deshalb auch als Spin-Bahn-Wechselwirkung bezeichnet. Für die Forschung eröffnet dies die Möglichkeit, die Elektronen-Spins in einem eigentlich nicht-magnetischen Halbleiter über „effektive“ Magnetfelder zu kontrollieren oder zu beeinflussen.

Vor diesem Hintergrund hat das Forscherteam um Prof. Dr. Klaus Richter vom Institut für Theoretische Physik der Universität Regensburg in Kooperation mit Experimentalphysikern um Prof. Dr. Junsaku Nitta von der Tohoku University in Sendai (Japan) eine Methode entwickelt, um die jeweilige Spin-Bahn-Wechselwirkung und die damit verknüpften Magnetfelder näher zu bestimmen.

Ausgangspunkt war die Idee, die Elektronen in ultradünnen Drähte mit einem Querschnitt von etwa 10 nm mal 700 nm – gewissermaßen entlang einer Linie – einzusperren. Die damit erzwungene, praktisch eindimensionale Bewegung der Elektronen führt dazu, dass die Magnetfelder eine spezifische Ausrichtung annehmen, die auf die Stärke der Spin-Bahn-Wechselwirkungen rückschließen lässt.

Spin-Bahn-Felder sind für eine Halbleiter-basierte Spinelektronik Fluch und Segen zugleich: Sie erlauben zum einen die Steuerung und Kontrolle der Spinausrichtung, können aber andererseits auch dazu führen, dass eine ursprüngliche Spinpolarisation der Ladungsträger durch die Felder zunichte gemacht wird. Daher kann es von Vorteil sein, die Wirkung der Spin-Bahn-Felder zu minimieren und im besten Fall gänzlich „auszuschalten“.

Das ist möglich, wenn sich die beiden Ursachen, die Kristallgittereffekte von Halbleitern und die Felder durch eine von außen angelegte Spannung, in ihrer Wirkung gegenseitig aufheben. Das Team aus Regensburg und Sendai konnte nachweisen, dass dies durch ein geschicktes Justieren der externen Spannung möglich ist. Das Resultat ist eine maßgeschneiderte helixförmige Rotationsbewegung der Elektronen-Spins, während sich die Elektronen durch die Nanodrähte bewegen.

Titel der Originalpublikation:
A. Sasaki, S. Nonaka, Y. Kunihashi, M. Kohda, T. Bauernfeind, T. Dollinger, K. Richter und J. Nitta, „Direct determination of spin-orbit interaction coefficients and realization of the persistent spin helix symmetry“, Nature Nanotechnology (2014)
http://dx.doi.org/10.1038/nnano.2014.128

Ansprechpartner für Medienvertreter:
Prof. Dr. Klaus Richter
Universität Regensburg
Institut für Theoretische Physik
Tel.: 0941 943-2029
Klaus.Richter@physik.uni-regensburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Neuro-Robotik ermöglicht Querschnittsgelähmten selbstständig zu essen
07.12.2016 | Eberhard Karls Universität Tübingen

nachricht Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik
05.12.2016 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie