Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen-Spins unter Strom – Neues Verfahren zur Bestimmung der Spin-Bahn-Wechselwirkung

17.07.2014

Ein internationales Forscherteam der Universitäten in Regensburg und Sendai (Japan) hat ein neues Verfahren entwickelt, um die Stärke der Spin-Bahn-Wechselwirkung in Halbleitern zu bestimmen.

Die Spin-Bahn-Wechselwirkung ist die Kraft, die auf den Spin – den Eigendrehimpuls von Elektronen – einwirkt. Die Kontrolle dieser Kraft ist von zentraler Bedeutung für die Entwicklung einer Spinelektronik, die in Zukunft die Wirkungsweise von Transistoren revolutionieren könnte.

Die Ergebnisse der Forscher wurden vor wenigen Tagen in der Fachzeitschrift „Nature Nanotechnology“ veröffentlicht (DOI 10.1038/nnano.2014.128).

In herkömmlichen Transistoren nutzt man ausschließlich die Ladung von Elektronen, um den Stromfluss zu kontrollieren und auf diese Weise logische Operationen auszuführen. Dem gegenüber versucht man in der Spinelektronik, auch den Eigendrehimpuls der Elektronen – ihren Spin – zu nutzen, indem man die Spineigenschaften der Elektronen manipuliert.

Der Elektronen-Spin kann als Pirouette des Elementarteilchens um die eigene Achse verstanden werden, wobei die Bewegung mit einem magnetischen Moment verknüpft ist. Demnach weist das Elektron Eigenschaften ähnlich einer Kompassnadel auf. Die Quantenphysik lässt bei dieser winzigen Kompassnadel allerdings nur zwei Ausrichtungen – parallel (spin-up) oder anti-parallel (spin-down) zum Magnetfeld – zu.

In Halbleitern ergeben sich nochmals besondere Bedingungen: Hier unterliegen Elektronen wegen der Krsitallgitterstruktur der Halbleiter oder aufgrund einer von außen angelegten elektrischen Spannung dem Einfluss von elektrischen Feldern.

Die elektrischen Felder wirken wiederum auf die sich bewegenden Elektronen-Spins wie Magnetfelder, an denen sich diese ausrichten (Spin-Bahn-Felder). Die damit verbundene Kraft wird deshalb auch als Spin-Bahn-Wechselwirkung bezeichnet. Für die Forschung eröffnet dies die Möglichkeit, die Elektronen-Spins in einem eigentlich nicht-magnetischen Halbleiter über „effektive“ Magnetfelder zu kontrollieren oder zu beeinflussen.

Vor diesem Hintergrund hat das Forscherteam um Prof. Dr. Klaus Richter vom Institut für Theoretische Physik der Universität Regensburg in Kooperation mit Experimentalphysikern um Prof. Dr. Junsaku Nitta von der Tohoku University in Sendai (Japan) eine Methode entwickelt, um die jeweilige Spin-Bahn-Wechselwirkung und die damit verknüpften Magnetfelder näher zu bestimmen.

Ausgangspunkt war die Idee, die Elektronen in ultradünnen Drähte mit einem Querschnitt von etwa 10 nm mal 700 nm – gewissermaßen entlang einer Linie – einzusperren. Die damit erzwungene, praktisch eindimensionale Bewegung der Elektronen führt dazu, dass die Magnetfelder eine spezifische Ausrichtung annehmen, die auf die Stärke der Spin-Bahn-Wechselwirkungen rückschließen lässt.

Spin-Bahn-Felder sind für eine Halbleiter-basierte Spinelektronik Fluch und Segen zugleich: Sie erlauben zum einen die Steuerung und Kontrolle der Spinausrichtung, können aber andererseits auch dazu führen, dass eine ursprüngliche Spinpolarisation der Ladungsträger durch die Felder zunichte gemacht wird. Daher kann es von Vorteil sein, die Wirkung der Spin-Bahn-Felder zu minimieren und im besten Fall gänzlich „auszuschalten“.

Das ist möglich, wenn sich die beiden Ursachen, die Kristallgittereffekte von Halbleitern und die Felder durch eine von außen angelegte Spannung, in ihrer Wirkung gegenseitig aufheben. Das Team aus Regensburg und Sendai konnte nachweisen, dass dies durch ein geschicktes Justieren der externen Spannung möglich ist. Das Resultat ist eine maßgeschneiderte helixförmige Rotationsbewegung der Elektronen-Spins, während sich die Elektronen durch die Nanodrähte bewegen.

Titel der Originalpublikation:
A. Sasaki, S. Nonaka, Y. Kunihashi, M. Kohda, T. Bauernfeind, T. Dollinger, K. Richter und J. Nitta, „Direct determination of spin-orbit interaction coefficients and realization of the persistent spin helix symmetry“, Nature Nanotechnology (2014)
http://dx.doi.org/10.1038/nnano.2014.128

Ansprechpartner für Medienvertreter:
Prof. Dr. Klaus Richter
Universität Regensburg
Institut für Theoretische Physik
Tel.: 0941 943-2029
Klaus.Richter@physik.uni-regensburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen
12.12.2017 | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

nachricht Meilenstein in der Kreissägetechnologie
11.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten