Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eiweiße aus Reis – Rohstoff statt Abfall

01.10.2015

Extrahiert man Reisstärke aus dem Reis, bleiben Eiweiße zurück. Ein wertvoller Rohstoff, der bislang von Reisstärkeproduzenten teuer entsorgt wird. Ein neues Verfahren spaltet das Eiweiß nun in kleinere Stücke, in Peptide, und reinigt sie. Die Peptide wiederum könnten in Kosmetika und Nahrungsergänzungsmitteln wertvolle Dienste leisten.

Reis enthält viele wertvolle Bestandteile und dient weiten Teilen der Erdbevölkerung als Grundnahrungsmittel. Zum überwiegenden Teil besteht das Getreide aus Stärke. Diese wird von vielen Betrieben extrahiert und verkauft, etwa als gluten- und allergenfreie Babynahrung.


Mit spezieller Filtrationstechnik werden die Peptide aus dem Reis-Eiweiß der Größe nach getrennt.

© Fraunhofer UMSICHT

Die Eiweiße, die dabei übrig bleiben, entsorgen die Hersteller vielfach – und das zu hohen Preisen. Dabei könnten die Eiweiße aufgrund ihrer physiologischen Aktivität von großem Nutzen sein: etwa für Nahrungsergänzungsmittel oder für Kosmetika. Sie sind ein reines Naturprodukt, und der Körper kann sie gut aufnehmen.

Im EU-Projekt BIORICE haben Forscherinnen und Forscher des Fraunhofer-Instituts für Umwelt-, Sicherheits- und Energietechnik UMSICHT in Oberhausen gemeinsam mit europäischen Partnern nun ein Verfahren entwickelt, um diesen Rohstoff zu nutzen.

»Wir haben aus einem Nebenprodukt, das eigentlich Kosten verursacht, ein hochwertiges Produkt generiert, das in Nahrungsmitteln und Kosmetika genutzt werden kann«, sagt Dr.-Ing. Jürgen Grän-Heedfeld, Wissenschaftler am UMSICHT. »Das ist für diesen Rohstoff bislang einzigartig.«

Peptide – nach Größe sortiert

Doch wie werden die Eiweiße verarbeitet? Zunächst spalten die italienischen Projektpartner von der Universität Bologna die Eiweiße in Bruchstücke auf, die Peptide. »Wir trennen diese Peptide der Größe nach, wir sortieren sie quasi«, erläutert Grän-Heedfeld. Dazu nutzen die Forscher verschiedene Membranen, die wie Filter wirken.

Zunächst filtern sie die Peptide, die in einer wässrigen Suspension vorliegen, über eine Membran mit 0,2 Mikrometer großen Poren. Die größeren unverdauten Proteine, die man also selbst mit bloßem Auge erkennen kann, bleiben vor der Membran hängen. Die Lösung, die die Membran passiert hat, ist nun klar: Die darin enthaltenen Peptide sind zu klein, um sie mit dem Auge erkennen zu können.

Diese Lösung schleusen die Wissenschaftler nun durch drei weitere Membranen. Das Ergebnis: Peptide in vier verschiedenen Größenordnungen. Der Vorteil dieser Methode: Die Forscher setzen ausschließlich auf physikalische Trennmethoden, es kommt keinerlei Chemie zum Einsatz. Das Endprodukt ist naturrein. Mittlerweile haben die Wissenschaftler das Verfahren erfolgreich auf größere Maßstäbe übertragen: Statt der anfänglichen 15 bis 200 Milliliter arbeiten sie nun mit Lösungsmengen von bis zu 20 Litern.

Schonende Trocknung

In einem weiteren Schritt trocknen die Wissenschaftler die einzelnen Fraktionen – also die vier Lösungen, die nach der Filtration zurückbleiben. Dazu nutzen sie das etablierte und schonende Verfahren der Gefriertrocknung, wie es auch für Himbeeren im Müsli angewandt wird, sowie die Sprühtrockung. Bei der Gefriertrocknung zieht ein Vakuum das Wasser aus dem Produkt heraus, der Wasserdampf wird an einem Kondensator gefroren. Dieses Verfahren ist extrem schonend, allerdings auch energieaufwändig. Die Sprühtrocknung belastet die Eiweiße zwar etwas mehr, ist jedoch schneller: Eine Düse sprüht die Lösung in einen Heißluftstrom.

Dieser trocknet die Eiweißstücke in Sekundenbruchteilen – zurück bleibt das reine Peptid, das ein wenig an Milchpulver erinnert. »Auf diese Weise können wir im Labor Peptid-Mengen von 100 bis 200 Gramm leicht herstellen«, erklärt Grän-Heedfeld. Die Herausforderung lag vor allem darin, thermische Schädigungen zu vermeiden und die Peptide stabil zu halten. Denn sie sind ein Naturprodukt, das sich leicht verfärben oder gar schimmeln könnte. »Das Herstellungsverfahren umfasst viele Parameter. Um diese richtig einzustellen, braucht man viel Erfahrung und Expertise«, sagt Grän-Heedfeld.

Die Peptide, die die Forscher mit ihrem Verfahren produzieren, sind gänzlich neu: Sie stammen aus einem anderen Rohstoff als alle, die bereits auf dem Markt sind. Dennoch ist der Körper bereits mit ihnen vertraut: Essen wir Reis, zerlegt der Magen diesen schließlich auch – und zwar in die noch kleineren Aminosäuren, also in die einzelnen Bausteine der Peptide und Eiweiße.

Am Ende der Peptid-Herstellungskette steht derzeit ein klein- und mittelständiges Unternehmen mit Sitz in der Schweiz und in Italien: Es wird die Peptide vermarkten. Bevor diese als Bestandteile von Cremes und Nahrungsergänzungsmitteln in die Supermarktregale wandern, stehen allerdings noch viele Untersuchungen und Analysen an – vor allem, was ihre Verträglichkeit und Wirkungsweise angeht.

Weitere Informationen: http://www.biorice.eu/

Iris Kumpmann | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2015/Oktober/eiweisse-aus-reis-rohstoff-statt-abfall.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise