Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine wasserabweisende Membran mit Nano-Kanälen für eine hocheffiziente Energiespeicherung

22.07.2016

Energiespeicherung und eine stabile Stromversorgung sind ein zentrales Thema, wenn es um die Nutzung von Energie aus Solar- und Windkraftanlagen geht. Hier unterliegt der Energiegewinn natürlichen Schwankungen, die durch effiziente Speichermethoden ausgeglichen werden müssen. Wissenschaftlern des Leibniz-Instituts für Interaktive Materialien (DWI), der Aachener Verfahrenstechnik, RWTH Aachen, und der Hanyang University in Seoul gelang nun eine wesentliche Verbesserung einer Schlüsselkomponente für die Entwicklung neuer Energiespeichersysteme.

Redox-Flow-Batterien gelten als mögliche Zukunftstechnologie für eine hocheffiziente Energiespeicherung. Diese Batterien speichern elektrische Energie in Form von Elektrolyten, also chemischen Verbindungen, die in einem Lösungsmittel gelöst vorliegen.


Doktorand Tao Luo und Postdoc Il Seok Chae gehören zum Forscherteam, das eine neue, wasserabweisende Membran mit Nanokanälen entwickelt hat.

Philipp Scheffler/DWI


Laboraufbau einer Redox-Flow-Batterie mit einer hydrophoben Membran (im grauen Gehäuse unten im Bild) und zwei Elektrolyt-Reservoirs (Vorratsbehälter mit gelber Flüssigkeit).

Philipp Scheffler/DWI

In einer Vanadium-Redox-Flow-Batterie kommen beispielsweise in Schwefelsäure gelöste Vanadium-Ionen zum Einsatz. Zwei energiespeichernde Elektrolyte zirkulieren dabei in zwei Kreisläufen, die durch eine Membran getrennt sind. Die Speicherkapazität hängt von der Menge der Elektrolyte ab und kann individuell an die Anwendung angepasst werden.

Wenn die Batterie geladen oder entladen wird, werden die Vanadium-Ionen in den beiden Elektrolyten chemisch reduziert beziehungsweise oxidiert und gleichzeitig wandern Protonen durch die trennende Membran.

Die Membran spielt dabei eine ganz zentrale Rolle: Sie muss einerseits die energiespeichernden Elektrolyte in den beiden Kreisläufen voneinander trennen, da eine Vermischung zum Verlust der gespeicherten Energie führen würde. Andererseits müssen die Protonen die Membran beim Lade- und Entladevorgang der Batterie problemlos passieren können. Die Entwicklung eines Materials, das diese beiden Eigenschaften erfüllt – undurchlässig für die Vanadium-Ionen und durchlässig für Protonen – stellt eine wesentliche Hürde dar, insbesondere auch hinsichtlich einer effizienten, kommerziellen Nutzung.

Als Maßstab galt bislang eine Membran aus dem Polymer Nafion. Eine solche Membran ist chemisch stabil und lässt Protonen passieren. Allerdings sind Nafion und Nafion-ähnliche Polymere durch Wasser gequollen, sodass sie nur eine limitierte Barriere-Funktion für die Vanadium-Ionen haben. Polymerchemiker versuchen diese Vanadium-Leckage zu unterdrücken, indem sie die molekularen Strukturen der Membran verändern.

Die Wissenschaftler aus Aachen und Seoul haben einen völlig anderen Ansatz gewählt. „Wir arbeiten mit einer hydrophoben, also wasserabweisenden Membran. Die Membran quillt nicht im Wasser und bleibt daher stabil“, erklärt Prof. Dr.-Ing. Matthias Wessling. Er ist stellvertretender wissenschaftlicher Direktor im Leibniz-Institut für Interaktive Materialien (DWI) und Inhaber des RWTH-Lehrstuhls für chemische Verfahrenstechnik.

„Wir waren sehr positiv überrascht, als wir festgestellt haben, dass sich in dem hydrophoben Material winzige Poren und Kanäle ausbilden, in denen Protonen problemlos und mit hoher Geschwindigkeit durch die Membran gelangen können, während die Vanadium-Ionen aufgrund ihrer Größe zurückgehalten werden.“ Weniger als zwei Nanometer, also weniger als zwei Millionstel Millimeter, sind die Kanäle breit. Der Trenneffekt hat Bestand: Auch nach einer Woche oder 100 Lade- und Entladevorgängen ist die Membran für Elektrolyt-Ionen undurchlässig.

„Auf diese Weise konnten wir eine Energieeffizienz von bis zu fast 99 Prozent erreichen, je nach Stromstärke. Unsere Membran stellt also eine echte Barriere für das Vanadium dar“, so Wessling weiter. Unabhängig von der Stromstärke konnten die Wissenschaftler in jedem Fall eine Energieeffizienz von mindestens 85 Prozent erzielen. Konventionelle Systeme erreichen dagegen maximal 76 Prozent.

Wissenschaftlich ergibt sich mit diesen Forschungsergebnissen ein neues Transportmodell. Das Polymer mit ‚intrinsischer‘ Mikroporosität, PIM genannt, zeigte in optischen Experimenten keine Quellung mit Wasser. Stattdessen verdichtet es sich signifikant. Die Wissenschaftler erklären dieses Phänomen damit, dass sich Wassermoleküle nicht im Polymer, sondern nur in den Poren sammeln. Das Forscherteam hofft, mit diesen Ergebnissen weitere Studien anzustoßen, die analysieren, wie sich Ionen in Mikroporen wasserabweisender Polymere verhalten.

Die Wissenschaftler aus Aachen und Seoul planen jetzt weitere Tests: Kann die neue Membran für die Anwendung in der Redox-Flow-Batterie vielleicht sogar noch optimiert werden? Und ist sie wirklich langfristig stabil? Sollte das der Fall sein, könnte die hydrophobe Membran die tatsächliche Nutzung von Redox-Flow-Batterien und ähnlichen Energiespeichersystemen extrem vorantreiben. Insbesondere eine verlässliche Stromversorgung bei Nutzung nachhaltiger Energiequellen, aber auch ein Beitrag zur Netzstabilität und Frequenzerhaltung motiviert die Forscher und Batterie-Entwickler dabei.

Veröffentlichung:
Chae, I. S., Luo, T., Moon, G. H., Ogieglo, W., Kang, Y. S., & Wessling, M. (2016). Ultra‐High Proton/Vanadium Selectivity for Hydrophobic Polymer Membranes with Intrinsic Nanopores for Redox Flow Battery. Advanced Energy Materials.

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.dwi.rwth-aachen.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden
19.01.2018 | Technische Universität München

nachricht Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten
18.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie