Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effiziente organische Solarzellen in Aussicht

19.01.2009
Geringere Verluste beim internen Energietransport

Forscher an der University of Toronto haben aufgezeigt, wie effiziente Solarzellen auf Basis von organischen Polymeren Realität werden könnten. "Eines der größten Hindernisse bei organischen Solarzellen ist, dass man kaum kontrollieren kann, was nach der Lichtabsorption passiert", sagt Elisabetta Collini, Chemikerin in Toronto.

Sie hat gemeinsam mit ihrem Kollegen Greg Scholes einen Ansatz entwickelt, um den Energietransport bei sogenannten konjugierten Polymeren tatsächlich in effiziente Bahnen zu lenken. Das verspricht letztendlich eine höhere Energieausbeute bei organischen Solarzellen.

Konjugierte Polymere sind lange, organische Moleküle, die schon bislang als gute Kandidaten für die Verwirklichung effizienter organischer Solarzellen galten. Ein Problem ist, dass die Absorption von Licht an der Oberfläche einer Solarzelle nur ein erster Schritt auf dem Weg zur Stromerzeugung ist.

"Die Lichtanregung muss erst zu einer Trennschicht wandern, wo sie in nutzbare positive und negative Ladung umgewandelt wird", beschreibt Wichard J. D. Beenken, Physiker an der TU Illmenau, auf Anfrage von pressetext. Wenn dieser Transport entlang der Polymerketten durch wiederholte Absorption und Reemission sprunghaft geschieht, ist das nicht wirklich effizient. Denn die Sprünge bedeuten einen Energieabfall und so sinkt die erzielbare Spannung, während die Wahrscheinlichkeit einer zufälligen Wiederabstrahlung steigt und sich negativ auf die Stromstärke auswirkt.

Die Wissenschaftler in Toronto haben bei ihrem Experiment einen anderen Transportmechanismus gezeigt. Eine sehr schneller Energietransport erfolgt "durch einen quantenmechanischen Mechanismus statt durch zufällige Sprünge", beschreibt Scholes. Das funktioniere auch bei Raumtemperatur. "Das ist außergewöhnlich und wird zukünftige Forschungen wesentlich beeinflussen. Denn alle dachten, dass diese Art von Quanteneffekten nur in komplexen Systemen bei sehr geringen Temperaturen funktionieren", meint der Wissenschaftler. Die Ausbreitung erfolgt dabei nur entlang einzelner Molekülketten, deren chemische Struktur Scholes als wesentlichen Faktor für den quantenkohärenten Energietransport sieht.

Sollten sich die Ergebnisse der Forscher aus Toronto für die Praxis umsetzen lassen, würde das nach Beenkens Ansicht große Vorteile gerade für Solarzellen bedeuten. "Das wäre ein kontinuierlicher Energiefluss entlang der Polymere", kommentiert Beenken. Diese Variante ist schneller und verlustfreier als die sprunghafte Ausbreitung. Die Leistungseffizienz liegt insgesamt höher, da nicht energieverbrauchend absorbiert und reemittiert wird, und der schnellere Transport außerdem die Gefahr des zufälligen Wiederabstrahlens des einmal eingefangenen Lichts minimiert. "Dadurch fallen gleichzeitig Spannung und Strom höher aus", sagt Beenken. Ob die technologische Umsetzung des kanadischen Ansatzes gelingt, bleibt aber vorerst abzuwarten. Dieser erfordert um wirksam zu sein ein völlig neues Design der organischen Solarzelle bezüglich der Anordnung der Polymerketten und der Trennschicht, so Beenken.

Thomas Pichler | pressetext.deutschland
Weitere Informationen:
http://www.utoronto.ca
http://www.tu-ilmenau.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise