Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effiziente Hochleistungs-Diodenlaser

04.12.2009
Wissenschaftler des Ferdinand-Braun-Instituts verdoppeln die Leistung von DFB-Lasern. Dies erschließt neue Anwendungen in leistungsstarken Systemen.

Wissenschaftler des Ferdinand-Braun-Instituts, Leibniz-Institut für Höchstfrequenztechnik (FBH) haben leistungsstarke, hocheffiziente Distributed Feedback (DFB)-Laser mit einer Wellen­länge von 976 Nanometern entwickelt.

Die optische Leistung konnte dabei mit 11 Watt aus einem 90 Mikrometer breiten Streifen gegenüber den leistungsstärksten bisher verfügbaren DFB-Lasern mehr als verdoppelt werden. Entscheidend ist, dass die Laser zugleich eine hohe Konversionseffizienz besitzen: Der Anteil an elektrischer Energie, der in Licht umgewandelt wird, beträgt bis zu 58 Prozent.

„Durch die Kombination von hoher Leistung und hoher Effizienz erschließen sich für die DFB-Laser neue Anwendungsgebiete, wie das Pumpen von Faser- und Festkörperlasern oder die Materialbearbeitung“, sagt Dr. Paul Crump vom FBH. „Kommerziell verfügbare DFB-Diodenlaser, die als Pumplaser eingesetzt werden, erreichen bislang nur kleine Leistungen von bis zu 4 Watt.“

DFB-Laser unterscheiden sich von einfachen Diodenlasern dadurch, dass in ihrem Wellenleiter ein Gitter integriert ist, das den Brechungsindex periodisch moduliert. Breitet sich Licht in einem solchen Wellenleiter aus, entsteht durch wellenlängenabhängige Rückkopplung eine scharfe Spektrallinie. Die Hochleistungs-DFB-Laser besitzen deshalb ein schmales Spektrum mit einer Breite von weniger als einem Nanometer, dessen Wellenlänge sich nur wenig mit der Temperatur verändert. Herkömmliche Diodenlaser dagegen haben ein breites Spektrum, welches sich nur aufwändig mit Hilfe eines externen Gitters auf einen schmalen Spektralbereich stabilisieren lässt. DFB-Diodenlaser, bei denen hohe Leistungen normalerweise schwer zu erreichen sind, sind deshalb eine preiswerte und weniger störanfällige Alternative für anspruchsvolle Anwendungen.

Fortschritte durch Optimierungen bei Design und Herstellung

Der entscheidende Fortschritt gelang den Wissenschaftlern durch ein optimiertes Design der Halbleiterschichtstrukturen und einen verbesserten Prozess zur Herstellung des integrierten Gitters. Der Einbau eines solchen Gitters führt normalerweise zu deutlich erhöhten Verlusten und höheren elektrischen Betriebsspannungen des Diodenlasers. Beide Effekte, die die Leistung und Konversionseffizienz verringern, konnten auf ein Minimum reduziert werden. Bei der Entwicklung legten die Wissenschaftler auch Wert auf einen geringen Divergenzwinkel der Laserstrahlung (

Durch Optimierung von Design und Herstellungsmethoden, haben die FBH-Wissen­schaftler eine neue Klasse von leistungsstarken, effizienten Laserdioden mit geringer Spektralbreite entwickelt. Dadurch wird ein Engpass im Bereich der Lasersysteme beseitigt – hohe optische Leistung wird jetzt gleichzeitig mit einem geringen Divergenzwinkel und schmalen Spektrum generiert. Externe optische Elemente werden dazu nicht benötigt, weshalb Kosteneinsparungen und Systemverbesserungen in der Anwendung zu erwarten sind.

Weitere Informationen

Petra Immerz
Communications & Marketing Manager

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin

Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de

Hintergrundinformationen

Das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Opto­elektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Innovationen in den gesell­schaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Lasersysteme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwendungsfelder reichen von der Medizin­technik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satelliten­kommu­nikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunksysteme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikrowellenplasmaquellen mit Nieder­spannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammen­arbeit des FBH mit Industriepartnern und Forschungs­einrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 240 Mitarbeiter und hat einen Etat von 20 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. (FVB) und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Positronen als neues Werkzeug für die Forschung an Lithiumionen-Batterien: Löcher in der Elektrode
22.02.2017 | Technische Universität München

nachricht Mit Strom vorankommen
21.02.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Internationale Fachkonferenz „InnoTesting“ am 23. und 24. Februar 2017 in Wildau

22.02.2017 | Veranstaltungen

Wunderwelt der Mikroben

22.02.2017 | Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ursache für eine erbliche Muskelerkrankung entdeckt

22.02.2017 | Medizin Gesundheit

Möglicher Zell-Therapieansatz gegen Zytomegalie

22.02.2017 | Biowissenschaften Chemie

Meeresforschung in Echtzeit verfolgen

22.02.2017 | Geowissenschaften