Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effiziente Hochleistungs-Diodenlaser

04.12.2009
Wissenschaftler des Ferdinand-Braun-Instituts verdoppeln die Leistung von DFB-Lasern. Dies erschließt neue Anwendungen in leistungsstarken Systemen.

Wissenschaftler des Ferdinand-Braun-Instituts, Leibniz-Institut für Höchstfrequenztechnik (FBH) haben leistungsstarke, hocheffiziente Distributed Feedback (DFB)-Laser mit einer Wellen­länge von 976 Nanometern entwickelt.

Die optische Leistung konnte dabei mit 11 Watt aus einem 90 Mikrometer breiten Streifen gegenüber den leistungsstärksten bisher verfügbaren DFB-Lasern mehr als verdoppelt werden. Entscheidend ist, dass die Laser zugleich eine hohe Konversionseffizienz besitzen: Der Anteil an elektrischer Energie, der in Licht umgewandelt wird, beträgt bis zu 58 Prozent.

„Durch die Kombination von hoher Leistung und hoher Effizienz erschließen sich für die DFB-Laser neue Anwendungsgebiete, wie das Pumpen von Faser- und Festkörperlasern oder die Materialbearbeitung“, sagt Dr. Paul Crump vom FBH. „Kommerziell verfügbare DFB-Diodenlaser, die als Pumplaser eingesetzt werden, erreichen bislang nur kleine Leistungen von bis zu 4 Watt.“

DFB-Laser unterscheiden sich von einfachen Diodenlasern dadurch, dass in ihrem Wellenleiter ein Gitter integriert ist, das den Brechungsindex periodisch moduliert. Breitet sich Licht in einem solchen Wellenleiter aus, entsteht durch wellenlängenabhängige Rückkopplung eine scharfe Spektrallinie. Die Hochleistungs-DFB-Laser besitzen deshalb ein schmales Spektrum mit einer Breite von weniger als einem Nanometer, dessen Wellenlänge sich nur wenig mit der Temperatur verändert. Herkömmliche Diodenlaser dagegen haben ein breites Spektrum, welches sich nur aufwändig mit Hilfe eines externen Gitters auf einen schmalen Spektralbereich stabilisieren lässt. DFB-Diodenlaser, bei denen hohe Leistungen normalerweise schwer zu erreichen sind, sind deshalb eine preiswerte und weniger störanfällige Alternative für anspruchsvolle Anwendungen.

Fortschritte durch Optimierungen bei Design und Herstellung

Der entscheidende Fortschritt gelang den Wissenschaftlern durch ein optimiertes Design der Halbleiterschichtstrukturen und einen verbesserten Prozess zur Herstellung des integrierten Gitters. Der Einbau eines solchen Gitters führt normalerweise zu deutlich erhöhten Verlusten und höheren elektrischen Betriebsspannungen des Diodenlasers. Beide Effekte, die die Leistung und Konversionseffizienz verringern, konnten auf ein Minimum reduziert werden. Bei der Entwicklung legten die Wissenschaftler auch Wert auf einen geringen Divergenzwinkel der Laserstrahlung (

Durch Optimierung von Design und Herstellungsmethoden, haben die FBH-Wissen­schaftler eine neue Klasse von leistungsstarken, effizienten Laserdioden mit geringer Spektralbreite entwickelt. Dadurch wird ein Engpass im Bereich der Lasersysteme beseitigt – hohe optische Leistung wird jetzt gleichzeitig mit einem geringen Divergenzwinkel und schmalen Spektrum generiert. Externe optische Elemente werden dazu nicht benötigt, weshalb Kosteneinsparungen und Systemverbesserungen in der Anwendung zu erwarten sind.

Weitere Informationen

Petra Immerz
Communications & Marketing Manager

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin

Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de

Hintergrundinformationen

Das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Opto­elektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Innovationen in den gesell­schaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Lasersysteme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwendungsfelder reichen von der Medizin­technik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satelliten­kommu­nikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunksysteme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikrowellenplasmaquellen mit Nieder­spannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammen­arbeit des FBH mit Industriepartnern und Forschungs­einrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 240 Mitarbeiter und hat einen Etat von 20 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. (FVB) und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie