Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effiziente Hochleistungs-Diodenlaser

04.12.2009
Wissenschaftler des Ferdinand-Braun-Instituts verdoppeln die Leistung von DFB-Lasern. Dies erschließt neue Anwendungen in leistungsstarken Systemen.

Wissenschaftler des Ferdinand-Braun-Instituts, Leibniz-Institut für Höchstfrequenztechnik (FBH) haben leistungsstarke, hocheffiziente Distributed Feedback (DFB)-Laser mit einer Wellen­länge von 976 Nanometern entwickelt.

Die optische Leistung konnte dabei mit 11 Watt aus einem 90 Mikrometer breiten Streifen gegenüber den leistungsstärksten bisher verfügbaren DFB-Lasern mehr als verdoppelt werden. Entscheidend ist, dass die Laser zugleich eine hohe Konversionseffizienz besitzen: Der Anteil an elektrischer Energie, der in Licht umgewandelt wird, beträgt bis zu 58 Prozent.

„Durch die Kombination von hoher Leistung und hoher Effizienz erschließen sich für die DFB-Laser neue Anwendungsgebiete, wie das Pumpen von Faser- und Festkörperlasern oder die Materialbearbeitung“, sagt Dr. Paul Crump vom FBH. „Kommerziell verfügbare DFB-Diodenlaser, die als Pumplaser eingesetzt werden, erreichen bislang nur kleine Leistungen von bis zu 4 Watt.“

DFB-Laser unterscheiden sich von einfachen Diodenlasern dadurch, dass in ihrem Wellenleiter ein Gitter integriert ist, das den Brechungsindex periodisch moduliert. Breitet sich Licht in einem solchen Wellenleiter aus, entsteht durch wellenlängenabhängige Rückkopplung eine scharfe Spektrallinie. Die Hochleistungs-DFB-Laser besitzen deshalb ein schmales Spektrum mit einer Breite von weniger als einem Nanometer, dessen Wellenlänge sich nur wenig mit der Temperatur verändert. Herkömmliche Diodenlaser dagegen haben ein breites Spektrum, welches sich nur aufwändig mit Hilfe eines externen Gitters auf einen schmalen Spektralbereich stabilisieren lässt. DFB-Diodenlaser, bei denen hohe Leistungen normalerweise schwer zu erreichen sind, sind deshalb eine preiswerte und weniger störanfällige Alternative für anspruchsvolle Anwendungen.

Fortschritte durch Optimierungen bei Design und Herstellung

Der entscheidende Fortschritt gelang den Wissenschaftlern durch ein optimiertes Design der Halbleiterschichtstrukturen und einen verbesserten Prozess zur Herstellung des integrierten Gitters. Der Einbau eines solchen Gitters führt normalerweise zu deutlich erhöhten Verlusten und höheren elektrischen Betriebsspannungen des Diodenlasers. Beide Effekte, die die Leistung und Konversionseffizienz verringern, konnten auf ein Minimum reduziert werden. Bei der Entwicklung legten die Wissenschaftler auch Wert auf einen geringen Divergenzwinkel der Laserstrahlung (

Durch Optimierung von Design und Herstellungsmethoden, haben die FBH-Wissen­schaftler eine neue Klasse von leistungsstarken, effizienten Laserdioden mit geringer Spektralbreite entwickelt. Dadurch wird ein Engpass im Bereich der Lasersysteme beseitigt – hohe optische Leistung wird jetzt gleichzeitig mit einem geringen Divergenzwinkel und schmalen Spektrum generiert. Externe optische Elemente werden dazu nicht benötigt, weshalb Kosteneinsparungen und Systemverbesserungen in der Anwendung zu erwarten sind.

Weitere Informationen

Petra Immerz
Communications & Marketing Manager

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin

Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de

Hintergrundinformationen

Das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Opto­elektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Innovationen in den gesell­schaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Lasersysteme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwendungsfelder reichen von der Medizin­technik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satelliten­kommu­nikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunksysteme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikrowellenplasmaquellen mit Nieder­spannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammen­arbeit des FBH mit Industriepartnern und Forschungs­einrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 240 Mitarbeiter und hat einen Etat von 20 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. (FVB) und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise