Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diodenlaserbarren mit 2 kW Ausgangsleistung für Hochleistungs-Laseranwendungen

01.06.2015

Das FBH hat auf der CLEO 2015 aktuelle Ergebnisse seines Projekts CryoLaser vorgestellt. Erstmalig wurden mindestens 2 Kilowatt (kW) optische Ausgangsleistung eines einzelnen Laserbarrens mit einem Zentimeter Emitterbreite nachgewiesen, der auf 203 Kelvin (-70° Celsius) gekühlt wurde.

Aktuelle Entwicklungen aus dem Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) zielen auf extrem leistungsfähige Diodenlaser für künftige Hochleistungs-Laseranwendungen. Zurzeit arbeiten Forscherteams weltweit an einer neuen Generation derartiger Laser – für die Grundlagenforschung, für neuartige Anwendungen in der Medizin und nicht zuletzt für die laserinduzierte Fusion.


Laserbarren mit optimiertem Aufbau für Hochleistungs-Laseranwendungen auf CCP-Mount, die im Projekt CryoLaser entwickelt wurden.

Foto: FBH/P. Immerz

Derartige Lasersysteme benötigen nicht nur extrem leistungsfähige, sondern auch in großer Stückzahl kostengünstig herstellbare Diodenlaser. Grundbausteine hierfür sind Diodenlaser-Barren im Wellenlängenbereich von 930 bis 970 nm.

Sie pumpen Ytterbium-dotierte Kristalle in Großlaseranlagen, die wiederum optische Spitzenpulse im Petawatt-Klassenbereich mit Pikosekunden-Pulsbreiten erzeugen. Ein einzelner Laserbarren in diesem Pumpquellen erreicht eine typische Ausgangsleistung zwischen 300 und 500 Watt.

Um die Leistungsfähigkeit der Diodenlaser weiter zu steigern, optimiert das FBH im Leibniz-Projekt CryoLaser sowohl deren Design wie auch die zur Fertigung nötige Technologie. Nur mit einer höheren Leistungsdichte lassen sich die Kosten pro Photon senken – weniger Material wird benötigt.

Zugleich muss der Wirkungsgrad erheblich verbessert werden, um die Effizienz des Gesamtsystems zu steigern. CryoLaser nutzt innovative Designs, die für den Laserbetrieb bei tiefen Temperaturen um -70°C (203 K) optimiert sind. In diesem Temperaturbereich steigt die Leistungsfähigkeit von Diodenlasern deutlich.

Aktuelle Ergebnisse aus CryoLaser präsentierte das FBH-Team rund um Paul Crump kürzlich in einem eingeladenen Seminar und einem Vortrag bei der CLEO in San Jose, USA. Dank eines weiterentwickelten vertikalen Designs und eines verbesserten Aufbaus liefern die 940 nm Laserbarren bei Temperaturen von -70°C (203 K) weltweite Bestwerte: 2 kW Spitzenleistung pro Barren bei einem maximal verfügbaren Strom von 2 kA, einer Pulsbreite von 200 µs und einer Frequenz von 10 Hz.

Das entspricht einer Pulsenergie von 0,4 Joule. Für solche Leistungen waren bislang mindestens vier aufeinander gestapelte Einzelbarren notwendig. Bei hohen Leistungen von 1 kW laserten die Barren mit 65% Konversionseffizienz und erreichten selbst bei 2 kW noch 56%.

Mit diesen Werten haben die Baren das Potenzial, in künftigen Hochleistungs-Laseranlagen genutzt zu werden. Derzeit arbeitet das FBH-Team weiter an der Verbesserung der elektro-optischen Konversionseffizienz.

Das FBH deckt in diesem Forschungsprojekt die komplette Wertschöpfungskette ab, vom Design bis zu ersten Prototypen. Die fertigen Diodenlaser-basierten Pumpquellen werden anschließend gemeinsam mit den weltweit führenden Gruppen in diesem Bereich für den potenziellen Einsatz in Hochleistungs-Lasersystemen getestet.

Das zugehörige Pressefoto sowie weitere Pressebilder finden Sie hier zum Download: http://www.fbh-berlin.de/presse/bilderservice. Bitte beachten Sie das Copyright.

Publikationen:
C. Frevert, P. Crump, F. Bugge, S. Knigge, A. Ginolas, and G. Erbert “Low-temperature Optimized 940 nm Diode Laser Bars with 1.98 kW Peak Power at 203 K,” Paper SM3F.8, Proc. CLEO, San Jose, USA (2015).
P. Crump, C. Frevert, G. Erbert, and G. Tränkle “High Power Diode Lasers for Pumping High Energy Solid State Lasers” Paper SM3M.1 (Tutorial), Proc. CLEO, San Jose, USA (2015).
P. Crump, C. Frevert, A. Ginolas, S. Knigge, A. Maaßdorf, J. Lotz, W. Fassbender, J. Neukum, J. Körner, T. Töpfer, A. Pranovich, M. Divoky, A. Lucianetti, T. Mocek, K. Ertel, M. De Vido, G. Erbert and G. Tränkle, “Joule-Class 940-nm Diode Laser Bars for Millisecond Pulse Applications” IEEE Photon. Technol. Lett. Accepted for publication (2015), (Joint assessment of previous iterations of high power bars from Cryloaser)

Technical conference and trade show CLEO (10.-15.05.2015) in San Jose, USA
http://www.cleoconference.org

Kontakt
Petra Immerz, M.A.
Referentin Kommunikation & Public Relations

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. 030.6392-2626
Fax 030.6392-2602
E-Mail: petra.immerz@fbh-berlin.de

Hintergrundinformationen - das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Innovationen in den gesellschaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Lasersysteme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwendungsfelder reichen von der Medizintechnik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satellitenkommunikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunksysteme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikrowellenplasmaquellen mit Niederspannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 290 Mitarbeiter und hat einen Etat von 23 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. und ist Mitglied der Leibniz-Gemeinschaft.

Weitere Informationen:

http://www.fbh-berlin.de - Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH)
http://www.cleoconference.org - Technical conference and trade show CLEO
http://www.fbh-berlin.de/geschaeftsbereiche/diodenlaser/breitstreifen-barren/cry... - Informationen zu CryoLaser & CLEO

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher entwickeln effizientere Systeme für Brennstoffzellen und Kraft-Wärme-Kopplung
19.04.2017 | EWE-Forschungszentrum für Energietechnologie e. V.

nachricht Forscher entwickeln Elektrolyte für Redox-Flow-Batterien aus Lignin aus der Zellstoffherstellung
18.04.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie