Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Quanten-Schnüffelnase

21.10.2016

Der Laser, der zugleich ein Detektor ist: An der TU Wien wurde ein mikroskopisch kleiner Sensor entwickelt, mit dem man gleichzeitig verschiedene Gase nachweisen kann.

Wir Menschen erschnüffeln unterschiedliche Gerüche und Düfte durch chemische Rezeptoren in unserer Nase. Doch für den technischen Nachweis von Gasen greift man gerne auf ganz andere Verfahren zurück, wie beispielsweise Infrarotlaser.


Versuchsaufbau: Der Laser (rechts) sendet sein Licht durch einen Testbehälter, danach wird es von einem Spiegel (links) reflektiert und gelangt zurück.

TU Wien

Dabei wird ein Laserstrahl durch das Gas geschickt und am anderen Ende misst ein separater Detektor wie stark das Licht vom Gas abgeschwächt wurde. Ein winziger, neu entwickelter Sensor der TU Wien vereint nun beide Seiten in einem einzigen Bauteil: Dieselbe Mikrostruktur kann für das Aussenden und das Detektieren der Infrarotstrahlung verwendet werden.

Ringförmige Quantenkaskadenlaser

„Die Laser, die wir herstellen, haben mit gewöhnlichen Laser-Pointern nicht viel zu tun“, erklärt Rolf Szedlak vom Institut für Festkörperelektronik der TU Wien. „Wir bauen sogenannte Quantenkaskadenlaser. Sie bestehen aus einem ausgeklügelten Schichtsystem unterschiedlicher Materialien und emittieren Licht im Infrarotbereich.“

Wird an dieses Schichtsystem eine elektrische Spannung angelegt, wandern Elektronen durch den Laser. Durch eine passende Auswahl von Materialien und Schichtdicken verlieren die Elektronen immer ein bisschen Energie, wenn sie von einer Schicht in die nächste wechseln. Diese Energie wird in Form von Licht abgegeben – es entsteht ein Infrarot-Laserstrahl.

„Unsere Quantenkaskadenlaser sind ringförmig, mit einem Durchmesser von weniger als einem halben Millimeter“, sagt Prof. Gottfried Strasser, Leiter des Zentrums für Mikro- und Nanostrukturen an der TU Wien. „Seine geometrischen Eigenschaften tragen dazu bei, dass der Laser nur Licht einer ganz bestimmten, wohldefinieren Wellenlänge abstrahlt.“

„Für die chemische Analyse von Gasen ist das optimal, denn viele Gase absorbieren nur ganz bestimmte Anteile des Infrarotlichts“, sagt Prof. Bernhard Lendl vom Institut für Chemische Technologien und Analytik der TU Wien. Durch seinen individuellen Infrarot-„Fingerabdruck“ kann man ein Gas daher zuverlässig detektieren. Es wird lediglich ein Laser mit passender Wellenlänge benötigt sowie ein Detektor, der misst, wie viel Infrarotstrahlung vom Gas verschluckt wurde.

Der Laser, der auch detektiert

„Unsere Mikrostruktur besitzt den großen Vorteil, Laser und Detektor in einem zu sein“, erläutert Rolf Szedlak. Zwei konzentrische Quantenkaskaden-Ringe wurden dafür ineinander gepackt. Beide können (je nach Betriebsmodus) sowohl Licht aussenden als auch Licht detektieren – und zwar bei zwei leicht unterschiedlichen Wellenlängen. Ein Ring sendet Laserlicht aus, das durch das Gas geleitet und anschließend von einem Spiegel wieder zurückgeschickt wird. Der zweite Ring nimmt dieses reflektierte Licht auf und misst seine Stärke. Gleich darauf tauschen die beiden Ringe ihre Rollen und die nächste Messung kann durchgeführt werden.

Um diesen neuartigen Sensor zu testen, stellte sich das Forschungsteam der TU Wien eine besonders schwierige Aufgabe: Es galt, Isobuten und Isobotan zu unterscheiden – zwei Moleküle, die nicht nur zum Verwechseln ähnliche Namen, sondern auch sehr ähnliche chemische Eigenschaften aufweisen. Doch auch diese Probe bestanden die Mikro-Sensoren exzellent und die beiden Gase konnten zuverlässig identifiziert werden.

„Wenn Laser und Detektor vereint werden, hat das viele Vorteile“, erklärt Gottfried Strasser. „Auf diese Weise können extrem kompakte Sensoren gebaut werden. Denkbar ist sogar ein ganzes Array – sprich eine Anordnung vieler solcher Mikro-Sensoren – auf einem einzigen Chip unterzubringen und mit mehreren unterschiedlichen Wellenlängen gleichzeitig zu arbeiten.“ Anwendungsmöglichkeiten gibt es viele – etwa in der Umweltanalytik oder Medizin.

Rolf Szedlak, MSc
Institut für Festkörperelektronik
Technische Universität Wien
Floragasse 7, 1040 Wien
T: +43-1-58801-36229
rolf.szedlak@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/qclsensor Bilder
http://pubs.acs.org/doi/full/10.1021/acsphotonics.6b00603 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Gedruckte »in-situ« Perowskitsolarzellen – ressourcenschonend und lokal produzierbar
17.05.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Ein elektronischer Rettungshund
17.05.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rotierende Rugbybälle unter den massereichsten Galaxien

23.05.2018 | Physik Astronomie

Invasive Quallen: Strömungen als Ausbreitungsmotor

23.05.2018 | Ökologie Umwelt- Naturschutz

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics