Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Kraft der Sonne chemisch gespeichert

15.02.2016

An der TU Wien wurde eine neuartige photo-elektrochemische Zelle entwickelt, mit der man die Energie von UV-Licht bei hohen Temperaturen chemisch speichern kann.

Die Natur macht es vor: Pflanzen können Sonnenlicht auffangen und chemisch speichern. Dieses Kunststück auf großtechnischer Skala nachzumachen, gelingt uns heute aber noch nicht besonders gut. Photovoltaik wandelt das Licht direkt in Strom um, aber bei hohen Temperaturen nimmt der Wirkungsgrad konventioneller Solarzellen deutlich ab. Wenn man den Strom zur Gewinnung von Wasserstoff nutzt, kann man die Energie chemisch speichern, doch die Effizienz dieses Prozesses ist begrenzt.


Beheizter Versuchsreaktor

TU Wien


Photochemische Zelle: Licht erzeugt freie Ladungsträger, Sauerstoff (blau) wird durch die Membran gepumpt.

TU Wien

An der TU Wien wurde nun ein neues Konzept entwickelt: Durch die Auswahl ganz spezieller Materialien gelang es, Hochtemperatur-Photovoltaik mit einem elektrochemischen Element zu kombinieren.

Damit kann man UV-Licht nutzen, um Sauerstoffionen durch eine keramische Elektrolytmembran zu pumpen – so wird die Energie des UV-Lichts chemisch gespeichert. In Zukunft soll man mit dieser Methode Wasser mit Sonnenlicht direkt in Wasserstoff und Sauerstoff spalten können.

Hochtemperatur-taugliche Materialien

Schon als Student hatte Georg Brunauer immer wieder darüber nachgedacht, wie man Photovoltaik und elektrochemische Speicherung kombinieren könnte. Allerdings müsste ein solches System bei hohen Temperaturen funktionieren.

„Dann könnte man nämlich das Licht der Sonne mit Spiegeln konzentrieren und große Anlagen mit hohem Wirkungsgrad bauen“, sagt Brunauer. Gewöhnliche Solarzellen funktionieren allerdings nur bis etwa 100°C gut – in einem Solarkonzentrator-Kraftwerk würden viel höhere Temperaturen entstehen.

Bei der Arbeit an seiner Dissertation gelang es Brunauer dann, einen Lösungsansatz für dieses Problem umzusetzen – und zwar mit einer ungewöhnlichen Wahl von Materialien. Anstatt silizium-basierter Photovoltaik wurden spezielle Mischmetalloxide vom Typ Perovskit verwendet.

Durch die Kombination mehrerer verschiedener Metalloxide konnte eine Zelle hergestellt werden, die Hochtemperatur-Photovoltaik und Elektrochemie vereint. Neben dem Team von Prof. Karl Ponweiser, Brunauers Dissertationsbetreuer am Institut für Energietechnik und Thermodynamik, waren auch noch andere Forschungsgruppen der TU Wien am Projekt beteiligt: Das Elektrochemie-Team von Prof. Jürgen Fleig (Chemische Technologien und Analytik) sowie das Atominstitut der TU Wien.

Erst Spannung erzeugen, dann Ionen pumpen

„Unsere Zelle besteht aus zwei verschiedenen Teilen – nämlich aus einem oberen photoelektrischen und einen unteren elektrochemischen Teil“, sagt Georg Brunauer. „In der oberen Schicht werden durch Beleuchtung freie Ladungsträger erzeugt, genau wie in einer gewöhnlichen Solarzelle.“ Die Elektronen werden allerdings sofort wegtransportiert und auf die untere Seite der elektrochemischen Zelle geleitet. Das führt dazu, dass Sauerstoffatome dort negativ aufgeladen werden und dann durch die untere Schicht der Zelle hindurchwandern können.

„Das ist der entscheidende photoelektrochemische Schritt, der in weiterer Folge dann die Grundlage für Wasserzerlegung und Wasserstoffproduktion sein soll“, erklärt Brunauer. Die Vorstufe dazu – eine mit UV-Licht angetriebene Sauerstoff-Pumpe, funktioniert bereits und liefert bei 400°C eine Leerlaufspannung von bis zu 920 Millivolt.

Die Arbeiten zur Photo-elektrochemischen Festoxidzelle wurden nun im Fachjournal „Advanced Functional Materials“ veröffentlicht. Damit ist die Forschung freilich noch nicht abgeschlossen: „Weiterführende Arbeiten sind wichtig, um den Effekten phänomenologisch auf den Grund zu gehen und damit das Material noch weiter optimieren zu können“, sagt Brunauer. Wenn die elektrische Leistung noch etwas gesteigert wird, lässt sich mit der Zelle Wasser in Wasserstoff und Sauerstoff aufspalten. „Dieses Ziel ist in Griffweite, jetzt wo wir bewiesen haben, dass das Grundprinzip funktioniert“, sagt Georg Brunauer. Nicht nur zur Wasserstoffproduktion eignet sich das neue Konzept; man könnte auch CO2 aufspalten und daraus CO in Hinblick für Kraftstoffsynthesen gewinnen.

Patente und Firmengründung

Damit die neue Erfindung den Sprung vom Universitätslabor in die Umsetzung eines Prototyps schafft, hatte Georg Brunauer unteranderem mit einem Industriepartner das Startup-Unternehmen NOVAPECC gegründet. Gemeinsam mit der TU Wien wurden Patente angemeldet, dabei wurde Brunauer vom Forschungs- und Transfersupport der TU Wien unterstützt. Auch vom Inkubatorprogramm INiTS wurdr das Projekt unterstützt. Gefördert wurde das Projekt außerdem durch ein Brückenschlagprogramm der Forschungsförderungsgesellschaft FFG.

Rückfragehinweis:
Dipl.-Ing. Georg Brunauer
Institut für Energietechnik und Thermodynamik
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-302332
georg.brunauer@tuwien.ac.at

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/adfm.201503597/full Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fraunhofer CSP entwickelt mit Continental flexible Photovoltaik-Module für Lkws
23.09.2016 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Elektromobilität: Größere Reichweite und längere Lebensdauer
23.09.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit Kollegen der Freien Universität Berlin ein neues Molekül entdeckt: Die Eisenverbindung in der seltenen Oxidationsstufe +4 gehört zu den Ferrocenen und ist äußerst schwierig zu synthetisieren.

Metallocene werden umgangssprachlich auch als Sandwichverbindungen bezeichnet. Sie bestehen aus zwei organischen ringförmigen Verbindungen, den...

Im Focus: Neue Entwicklungen in der Asphären-Messtechnik

Kompetenzzentrum Ultrapräzise Oberflächenbearbeitung (CC UPOB) lädt zum Expertentreffen im März 2017 ein

Ob in Weltraumteleskopen, deren Optiken trotz großer Abmessungen nanometergenau gefertigt sein müssen, in Handykameras oder in Endoskopen − Asphären kommen in...

Im Focus: Mit OLED Mikrodisplays in Datenbrillen zur verbesserten Mensch-Maschine-Interaktion

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP arbeitet seit Jahren an verschiedenen Entwicklungen zu OLED-Mikrodisplays, die auf organischen Halbleitern basieren. Durch die Integration einer Bildsensorfunktion direkt im Mikrodisplay, lässt sich u.a. die Augenbewegung in Datenbrillen aufnehmen und zur Steuerung von Display-Inhalten nutzen. Das verbesserte Konzept wird erstmals auf der Augmented World Expo Europe (AWE), vom 18. – 19. Oktober 2016, in Berlin, Stand B25 vorgestellt.

„Augmented Reality“ (erweiterte Realität) und „Wearable Displays“ (tragbare Displays) sind Schlagworte, denen man mittlerweile fast täglich begegnet. Beide...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Künstliche Intelligenz ermöglicht die Entdeckung neuer Materialien

Mit Methoden der künstlichen Intelligenz haben Chemiker der Universität Basel die Eigenschaften von rund 2 Millionen Kristallen berechnet, die aus vier verschiedenen chemischen Elementen zusammengesetzt sind. Dabei konnten die Forscher 90 bisher unbekannte Kristalle identifizieren, die thermodynamisch stabil sind und als neuartige Werkstoffe in Betracht kommen. Das berichten sie in der Fachzeitschrift «Physical Review Letters».

Elpasolith ist ein glasiges, transparentes, glänzendes und weiches Mineral mit kubischer Kristallstruktur. Erstmals entdeckt im El Paso County (USA), kann man...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einsteins Geburtsstadt wird für eine Woche Hauptstadt der Physik

23.09.2016 | Veranstaltungen

Industrie und Wissenschaft diskutieren künftigen Mobilfunk-Standard 5G auf Tagung in Kassel

23.09.2016 | Veranstaltungen

Fachgespräch Feste Biomasse diskutiert Fragen zum Thema "Qualitätshackschnitzel"

23.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Korallenthermometer muss neu justiert werden

23.09.2016 | Biowissenschaften Chemie

Doppel-Infektion macht Erreger aggressiver

23.09.2016 | Biowissenschaften Chemie

Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt

23.09.2016 | Biowissenschaften Chemie