Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Kraft der Sonne chemisch gespeichert

15.02.2016

An der TU Wien wurde eine neuartige photo-elektrochemische Zelle entwickelt, mit der man die Energie von UV-Licht bei hohen Temperaturen chemisch speichern kann.

Die Natur macht es vor: Pflanzen können Sonnenlicht auffangen und chemisch speichern. Dieses Kunststück auf großtechnischer Skala nachzumachen, gelingt uns heute aber noch nicht besonders gut. Photovoltaik wandelt das Licht direkt in Strom um, aber bei hohen Temperaturen nimmt der Wirkungsgrad konventioneller Solarzellen deutlich ab. Wenn man den Strom zur Gewinnung von Wasserstoff nutzt, kann man die Energie chemisch speichern, doch die Effizienz dieses Prozesses ist begrenzt.


Beheizter Versuchsreaktor

TU Wien


Photochemische Zelle: Licht erzeugt freie Ladungsträger, Sauerstoff (blau) wird durch die Membran gepumpt.

TU Wien

An der TU Wien wurde nun ein neues Konzept entwickelt: Durch die Auswahl ganz spezieller Materialien gelang es, Hochtemperatur-Photovoltaik mit einem elektrochemischen Element zu kombinieren.

Damit kann man UV-Licht nutzen, um Sauerstoffionen durch eine keramische Elektrolytmembran zu pumpen – so wird die Energie des UV-Lichts chemisch gespeichert. In Zukunft soll man mit dieser Methode Wasser mit Sonnenlicht direkt in Wasserstoff und Sauerstoff spalten können.

Hochtemperatur-taugliche Materialien

Schon als Student hatte Georg Brunauer immer wieder darüber nachgedacht, wie man Photovoltaik und elektrochemische Speicherung kombinieren könnte. Allerdings müsste ein solches System bei hohen Temperaturen funktionieren.

„Dann könnte man nämlich das Licht der Sonne mit Spiegeln konzentrieren und große Anlagen mit hohem Wirkungsgrad bauen“, sagt Brunauer. Gewöhnliche Solarzellen funktionieren allerdings nur bis etwa 100°C gut – in einem Solarkonzentrator-Kraftwerk würden viel höhere Temperaturen entstehen.

Bei der Arbeit an seiner Dissertation gelang es Brunauer dann, einen Lösungsansatz für dieses Problem umzusetzen – und zwar mit einer ungewöhnlichen Wahl von Materialien. Anstatt silizium-basierter Photovoltaik wurden spezielle Mischmetalloxide vom Typ Perovskit verwendet.

Durch die Kombination mehrerer verschiedener Metalloxide konnte eine Zelle hergestellt werden, die Hochtemperatur-Photovoltaik und Elektrochemie vereint. Neben dem Team von Prof. Karl Ponweiser, Brunauers Dissertationsbetreuer am Institut für Energietechnik und Thermodynamik, waren auch noch andere Forschungsgruppen der TU Wien am Projekt beteiligt: Das Elektrochemie-Team von Prof. Jürgen Fleig (Chemische Technologien und Analytik) sowie das Atominstitut der TU Wien.

Erst Spannung erzeugen, dann Ionen pumpen

„Unsere Zelle besteht aus zwei verschiedenen Teilen – nämlich aus einem oberen photoelektrischen und einen unteren elektrochemischen Teil“, sagt Georg Brunauer. „In der oberen Schicht werden durch Beleuchtung freie Ladungsträger erzeugt, genau wie in einer gewöhnlichen Solarzelle.“ Die Elektronen werden allerdings sofort wegtransportiert und auf die untere Seite der elektrochemischen Zelle geleitet. Das führt dazu, dass Sauerstoffatome dort negativ aufgeladen werden und dann durch die untere Schicht der Zelle hindurchwandern können.

„Das ist der entscheidende photoelektrochemische Schritt, der in weiterer Folge dann die Grundlage für Wasserzerlegung und Wasserstoffproduktion sein soll“, erklärt Brunauer. Die Vorstufe dazu – eine mit UV-Licht angetriebene Sauerstoff-Pumpe, funktioniert bereits und liefert bei 400°C eine Leerlaufspannung von bis zu 920 Millivolt.

Die Arbeiten zur Photo-elektrochemischen Festoxidzelle wurden nun im Fachjournal „Advanced Functional Materials“ veröffentlicht. Damit ist die Forschung freilich noch nicht abgeschlossen: „Weiterführende Arbeiten sind wichtig, um den Effekten phänomenologisch auf den Grund zu gehen und damit das Material noch weiter optimieren zu können“, sagt Brunauer. Wenn die elektrische Leistung noch etwas gesteigert wird, lässt sich mit der Zelle Wasser in Wasserstoff und Sauerstoff aufspalten. „Dieses Ziel ist in Griffweite, jetzt wo wir bewiesen haben, dass das Grundprinzip funktioniert“, sagt Georg Brunauer. Nicht nur zur Wasserstoffproduktion eignet sich das neue Konzept; man könnte auch CO2 aufspalten und daraus CO in Hinblick für Kraftstoffsynthesen gewinnen.

Patente und Firmengründung

Damit die neue Erfindung den Sprung vom Universitätslabor in die Umsetzung eines Prototyps schafft, hatte Georg Brunauer unteranderem mit einem Industriepartner das Startup-Unternehmen NOVAPECC gegründet. Gemeinsam mit der TU Wien wurden Patente angemeldet, dabei wurde Brunauer vom Forschungs- und Transfersupport der TU Wien unterstützt. Auch vom Inkubatorprogramm INiTS wurdr das Projekt unterstützt. Gefördert wurde das Projekt außerdem durch ein Brückenschlagprogramm der Forschungsförderungsgesellschaft FFG.

Rückfragehinweis:
Dipl.-Ing. Georg Brunauer
Institut für Energietechnik und Thermodynamik
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-302332
georg.brunauer@tuwien.ac.at

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/adfm.201503597/full Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Sichere Nutzung von Wasserstoff für die Energiewende
25.07.2016 | Fraunhofer-Institut für Werkstoffmechanik IWM

nachricht Wussten Sie, dass UV-Licht für sicheres Baden während der Sommermonate sorgt?
25.07.2016 | Heraeus Noblelight GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superschneller Internetfunk dank Terahertz-Strahlung

Wissenschaftler aus Dresden und Dublin haben einen vielversprechenden technologischen Ansatz gefunden, der Notebooks und anderen mobilen Computern in Zukunft deutlich schnellere Internet-Funkzugänge ermöglichen könnte als bisher. Die Teams am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) und am irischen Trinity College Dublin brachten hauchdünne Schichten aus einer speziellen Verbindung von Mangan und Gallium dazu, sehr effizient Strahlung im sogenannten Terahertz-Frequenzbereich auszusenden. Als Sender in WLAN-Funknetzen eingesetzt, könnten die höheren Frequenzen die Datenraten zukünftiger Kommunikations-Netzwerke spürbar erhöhen.

„Wir halten diesen Ansatz für technologisch sehr interessant“, betont Dr. Michael Gensch, Leiter einer Arbeitsgruppe am HZDR, die sich mit den...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Forschen in 15 Kilometern Höhe - Einsatz des Flugzeuges HALO wird weiter gefördert

Das moderne Höhen-Forschungsflugzeug HALO (High Altitude and Long Range Research Aircraft) wird auch in Zukunft für Projekte zur Atmosphären- und Erdsystemforschung eingesetzt werden können: Die Deutsche Forschungsgemeinschaft (DFG) bewilligte jetzt Fördergelder von mehr als 11 Millionen Euro für die nächste Phase des HALO Schwerpunktprogramms (SPP 1294) in den kommenden drei Jahren. Die Universität Leipzig ist neben der Goethe-Universität Frankfurt am Main und der Technischen Universität Dresden federführend bei diesem DFG-Schwerpunktprogramm.

Die Universität Leipzig wird von der Fördersumme knapp 6 Millionen Euro zur Durchführung von zwei Forschungsprojekten mit HALO sowie zur Deckung der hohen...

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Rekord in der Hochdruckforschung: 1 Terapascal erstmals erreicht und überschritten

Einem internationalen Forschungsteam um Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky von der Universität Bayreuth ist es erstmals gelungen, im Labor einen Druck von 1 Terapascal (= 1.000.000.000.000 Pascal) zu erzeugen. Dieser Druck ist dreimal höher als der Druck, der im Zentrum der Erde herrscht. Die in 'Science Advances' veröffentlichte Studie eröffnet neue Forschungsmöglichkeiten für die Physik und Chemie der Festkörper, die Materialwissenschaft, die Geophysik und die Astrophysik.

Extreme Drücke und Temperaturen, die im Labor mit hoher Präzision erzeugt und kontrolliert werden, sind ideale Voraussetzungen für die Physik, Chemie und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress für Molekulare Medizin: Krankheiten interdisziplinär verstehen und behandeln

20.07.2016 | Veranstaltungen

Ultraschnelle Kalorimetrie: Gesellschaft für thermische Analyse GEFTA lädt zur Jahrestagung

19.07.2016 | Veranstaltungen

Das neue Präventionsgesetz aktiv gestalten

19.07.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Mineral-Kunststoff“ mit hohem Potenzial für die Zukunft

25.07.2016 | Materialwissenschaften

Neue Auslöser für eine schwere Krankheit

25.07.2016 | Biowissenschaften Chemie

TurboLight: Mehr Effizienz für Turbomaschinen durch Leichtbauweise mit Laserlicht

25.07.2016 | Materialwissenschaften