Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Weg zu besseren Trafos

07.09.2016

Dank einer hochmodernen Untersuchungsmethode ist es Forschenden gelungen, in Transformatoren hineinzuschauen und die magnetischen Domänen im Inneren des Trafo-Eisenkerns bei der Arbeit zu beobachten. Transformatoren, kurz Trafos, sind unerlässlich für die Stromversorgung von Industrie und Haushalten. Die Forschungsergebnisse zeigen, dass die Untersuchungsmethode sich gewinnbringend zur Entwicklung effizienterer Trafos einsetzen lässt. Über ihre Ergebnisse berichten die Forschenden in zwei Studien der neuesten Ausgabe des Fachjournals Physical Review Applied.

Transformatoren sind ein unverzichtbares Element unserer Stromversorgung: In Umspannwerken erhöhen sie die Spannung, sodass der Strom sich per Hochspannungsleitung und dadurch mit geringerem Verlust über weite Strecken transportieren lässt. Am anderen Ende der Hochspannungsleitungen setzen Trafos die Spannung wieder herab, sodass der Strom schliesslich mit 230 Volt aus der heimischen Steckdose kommt.


An der im Bild gezeigten Transformatorstation wird der Strom auf die Spannung von 16 kV transformiert und dann im Institut verteilt.

Foto: Paul Scherrer Institut/Markus Fischer

Dabei gibt es auch bei den modernen Trafos durchaus noch Optimierungspotenzial. Diesem Problem haben sich Christian Grünzweig, Neutronenforscher am Paul Scherrer Institut PSI, und seine Mitarbeitenden in zwei neuen Studien gewidmet. Dabei haben sie eine hochmoderne Untersuchungsmethode erprobt und gezeigt, wie sich damit während des Trafobetriebs die winzigen magnetischen Strukturen in dessen Inneren abbilden lassen. Die Ergebnisse dieser Untersuchungen helfen beim Verständnis heutiger Trafos und bei der Entwicklung zukünftiger, effizienterer Varianten.

Auf flexible Wände kommt es an

„Der ringförmige, magnetische Eisenkern im Trafo ist ein zentrales Element, das für die Erhöhung oder die Senkung der Spannung sorgt“, erklärt Grünzweig. Eine wesentliche Rolle spielen hierbei die darin verborgenen winzigen magnetischen Domänen. Innerhalb jeder Domäne ist die magnetische Ausrichtung einheitlich. Die Grenzen zwischen den Domänen nennen Fachleute Domänenwände. Wird der Eisenkern magnetisiert, bedeutet dies auf mikroskopischer Ebene, dass alle Domänen gleich ausgerichtet werden. Anders gesagt: Die Domänenwände verschwinden.

„Der entscheidende Faktor für effiziente Trafos ist die Mobilität der Domänenwände“, sagt Benedikt Betz, Hauptautor der beiden Studien und Doktorand in Grünzweigs Team. Denn durch unsere Stromleitungen fliesst Wechselstrom mit einer Frequenz von 50 Hertz. Das heisst, dass der Eisenkern des Trafos 100 Mal pro Sekunde ummagnetisiert wird – magnetischer Süd- wird zu Nordpol und umgekehrt. Die Domänen werden also hin- und hergeworfen. Je flexibler sie sind, desto besser.

Mit PSI-Technologie lassen sich Trafos durchleuchten

Wie sich die Domänenwände genau verhalten, liess sich mit den bisher etablierten Methoden nur indirekt beobachten. Die Neutronen-Gitterinterferometrie, die Christian Grünzweig vor zehn Jahren im Rahmen seiner Doktorarbeit am PSI entwickelt hat, ermöglicht nun erstmals den direkten Blick auf die Domänenwände. „Die Domänen kann man sich vorstellen wie Grundstücke, die durch Zäune voneinander abgegrenzt sind“, sagt Grünzweig. „Was wir nun mit der Neutronen-Gitterinterferometrie sehen können, sind die Zäune, also die Domänenwände, nicht die Grundstücke.“ Auf den Bildern der Forschenden zeigen sich die Domänenwände als schwarze Striche.

Nun hat Grünzweigs Team in einer Studie unter Federführung von Benedikt Betz untersucht, was passiert, wenn man an einen Trafo Gleichstrom anlegt und diesen einmal hoch- und wieder herunterfährt. Mit steigender Stromstärke verschwanden die schwarzen Striche; der Eisenkern wurde durchgehend magnetisiert. Erst in diesem Zustand überträgt der Eisenkern die Spannung effektiv. Reduzierten die Forschenden den Strom wieder, erschienen auch die Striche und somit die Domänenwände wieder. So lieferte diese erste Studie die Grundlagen für weitere Untersuchungen.

In einer zweiten Studie legten die Forschenden dann wie in der Realität Wechselstrom an und variierten Stromstärke und Frequenz. Wie sich zeigte, gab es bestimmte Schwellen sowohl der Stromstärke als auch der Wechselstromfrequenz, ab der die Domänenwände verschwanden oder zu erstarren schienen.

Zielgerichtet zu effizienteren Trafos

„Mit diesen Einblicken sorgen wir jetzt nicht unmittelbar für bessere Transformatoren“, räumt Christian Grünzweig ein. „Aber wir bieten der Wissenschaft und Industrie eine neue Methode an.“ Und zwar zur rechten Zeit, denn seit vergangenem Jahr ist die Energieindustrie angehalten, im Zuge der EU-Ökodesign-Richtlinie – die auch von der Schweiz übernommen wurde – ihre Transformatoren energetisch zu verbessern. Bislang funktioniert die Weiterentwicklung von Trafos eher nach der Devise Versuch und Irrtum: Warum ein neuer Trafo besser funktioniert als ein alter, ist im Detail gar nicht klar. Mit genauerer Kenntnis der magnetischen Vorgänge im Eisenkern können Hersteller von Transformatoren nun zielgerichteter ihre Produkte optimieren.

Das Potenzial für Verbesserungen ist enorm, da die grossen Verteilertrafos laut Hochrechnungen EU-weit pro Jahr rund 38 Terawattstunden Energie verlieren – das ist mehr als die Hälfte der Menge, die die Schweiz im Jahr produziert. Schon eine Effizienzsteigerung der Trafos um wenige Prozent könnte also die Produktionsmenge mehrerer Kraftwerke einsparen.

Hintergrund 1: Transformatoren

Trafos kommen sowohl in Umspannwerken zum Einsatz als auch bei der Stromversorgung von Haushaltsgeräten. Ein klassischer Trafo besteht aus einem quadratischen Ring aus Eisen, bei dem zwei Seiten mit Kupferdraht umwickelt sind. Die eine Wicklung – die Feldspule – nimmt die Eingangsspannung des Stroms auf, produziert ein Magnetfeld und magnetisiert so den Eisenkern. Die zweite Wicklung – die Induktionsspule – greift diese Spannung wieder ab. Je nachdem wie unterschiedlich dicht die beiden Spulen gewickelt sind, verändert sich dabei die Spannung: Hat die Induktionsspule zum Beispiel zehnmal weniger Windungen als die Feldspule, so reduziert sich die Spannung entsprechend, beispielsweise von 230 auf 23 Volt. Analog kann man die Spannung durch eine dichter gewundene Induktionsspule auch erhöhen.

Das Problem: Bei dieser Umwandlung geht stets Energie verloren. Selbst als Laie bemerkt man dies daran, dass der Trafo von so manchem Haushaltsgerät brummt oder warm wird. Für die Gesamtstromversorgung viel erheblicher sind aber die Verluste an den riesigen Transformatoren der Umspannwerke. Diese Grosstransformatoren haben die Forschenden des PSI im Blick.

Hintergrund 2: Untersuchungsmethode Neutronen-Gitterinterferometrie

Das Neutronen-Gitterinterferometer des PSI, das es inzwischen ähnlich auch an anderen Forschungsinstituten gibt, durchleuchtet Objekte mit Neutronenstrahlen. Die Neutronen schiessen dabei durch den Eisenkern wie Licht durch Wasser. Von den Domänenwänden allerdings werden sie abgelenkt wie das Licht beim Übergang zwischen Luft und Wasser (dadurch erscheint etwa ein Strohhalm, den man ins Wasser hält, als wäre er geknickt). Zwar beträgt die Ablenkung der Neutronenstrahlen nur etwa ein tausendstel Grad, doch das Interferometer kann dies sehen: Die Domänenwände zeigen sich auf den Bildern, die das Interferometer erzeugt, in Form schwarzer Striche.

Vor der Entwicklung der Neutronen-Gitterinterferometrie mussten Forschende bei der Untersuchung von Trafomagneten auf die sogenannte Kerr-Mikroskopie zurückgreifen. Damit lässt sich die Magnetisierungsrichtung an der Oberfläche eines Eisenkerns abbilden und daraus über bestimmte Modelle auf die Domänen im Inneren schliessen. Dazu muss man allerdings zuvor die Isolationsschicht des Eisenkerns entfernen. Allerdings besteht ein solcher Kern nicht aus einem Block Eisen, sondern aus vielen hauchdünnen Blechen, die jeweils mit einer solchen elektrisch isolierenden Schicht aus Magnesiumsilikat ummantelt zu dem Eisenkern gestapelt sind. „So vermeidet man Energieverluste aufgrund von Wirbelströmen innerhalb des Kerns“, erläutert PSI-Mitarbeiter Benedikt Betz. Allerdings konnten die PSI-Forscher nachweisen, dass sich ein Kern, dessen Isolierung man zuvor entfernt, anders verhält als einer der Art, wie man sie letztlich in der Industrie verwendet. Das liegt daran, dass die Deckschicht noch einen weiteren Zweck hat: Sie bringt mechanische Zugspannung in das Blech, welche die Domänenstruktur verbessert. Sprich: Wer die Deckschicht entfernt, verändert auch das Domänenmuster. Demnach kann die Kerr-Mikroskopie kein originales Bild der tatsächlichen Vorgänge liefern.

Text: Jan Berndorff


Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2000 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 370 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.


Kontakt/Ansprechpartner

Dr. Christian Grünzweig
Forschungsgruppe Neutronenradiografie und Aktivierung, Labor für Neutronenstreuung und Imaging,
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 46 62, E-Mail: christian.gruenzweig@psi.ch

Originalveröffentlichungen

Magnetization Response of the Bulk and Supplementary Magnetic Domain Structure in High-Permeability Steel Laminations Visualized In Situ by Neutron Dark-Field Imaging
B. Betz, P. Rauscher, R.P. Harti, R. Schäfer, A. Irastorza-Landa, H. Van Swygenhoven, A. Kaestner, J. Hovind, E. Pomjakushina, E. Lehmann, and C. Grünzweig
Phys. Rev. Applied 6, 024023 – Published 30 August 2016
DOI: http://dx.doi.org/10.1103/PhysRevApplied.6.024023

Frequency-Induced Bulk Magnetic Domain-Wall Freezing Visualized by Neutron Dark-Field Imaging
B. Betz, P. Rauscher, R. P. Harti, R. Schäfer, H. Van Swygenhoven, A. Kaestner, J. Hovind, E. Lehmann, and C. Grünzweig
Phys. Rev. Applied 6, 024024 – Published 30 August 2016
DOI: http://dx.doi.org/10.1103/PhysRevApplied.6.024024

Weitere Informationen:

https://youtu.be/OvQqDqUeVlQ Video: Domänenwände im Eisenkern eines Transformators
http://psi.ch/GBg1 Darstellung der Mitteilung auf der Webseite des PSI

Dagmar Baroke | Paul Scherrer Institut (PSI)

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht »ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern
18.10.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Intelligentes Lademanagement entwickelt – Forschungsprojekt ePlanB abgeschlossen
18.10.2017 | Forschungsstelle für Energiewirtschaft e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise