Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Damit Bildschirme kräftiger leuchten: Bayreuther Forscher entdecken Weg zur Farbsteuerung von OLEDs

23.03.2018

Organische Leuchtdioden (OLEDs) werden in Smartphones und TV-Geräten eingesetzt und unterstützen eine kontrastreiche Darstellung von Farben. In diesen Dioden werden als organische Halbleiter oft konjugierte Polymere eingesetzt. Forscher der Universität Bayreuth haben jetzt herausgefunden, wie die räumliche Struktur dieser Polymere genutzt werden kann, um die Farben der OLEDs zu steuern und Bildschirme noch besser zum Leuchten zu bringen. Im Wissenschaftsmagazin PNAS stellen sie diesen bisher unbekannten Mechanismus vor.

Polymere mit Rückgrat: Räumliche Strukturen bestimmen die Farben des Lichts


Links ein Polymer mit gestrecktem Rückgrat (rot-gelb). Die Seitenarme (grau) der molekularen Bausteine bilden ein Gerüst, das die Streckung stabilisiert. Rechts ein Polymer mit gekrümmtem Rückgrat.

Grafik: Dominic Raithel


Dominic Raithel M.Sc. bei der Vorbereitung eines Experiments in einem Laserlabor der Universität Bayreuth.

Foto: Christian Wißler

Im Mittelpunkt der neuen Forschungsergebnisse stehen Polymere, die sich für den Einsatz in organischen Leuchtdioden eignen. Aufgrund der aneinander geketteten molekularen Bausteine besitzen sie ein Rückgrat. Werden die Polymere nun einem Laserstrahl ausgesetzt, absorbieren sie das Licht und speichern es als Anregungsenergie. Diese Energie breitet sich an ihrem Rückgrat entlang aus. Kurz darauf wird sie durch Abstrahlung von Licht freigesetzt.

Bisher ist man davon ausgegangen, dass die Farbe des abgestrahlten Lichts davon abhängig sei, wie weit sich die Anregungsenergie in den Polymeren ausbreitet: Der Bereich, in dem sich die Energie ausdehnt, sei umso kleiner, je stärker die Polymere gekrümmt sind, hieß es. Doch die Bayreuther Wissenschaftler haben diese Annahmen jetzt widerlegt.

Die von ihnen untersuchten Polymere haben ein chemisch identisches Rückgrat und sind unterschiedlich gekrümmt, aber die Anregungsenergie dehnt sich über gleich große Bereiche aus. Gekrümmte Polymere senden grünes oder blaues Licht aus, gestreckte Polymere strahlen gelb oder rötlich.

„Wenn diese Polymere in organischen Leuchtdioden zum Einsatz kommen, können ihre unterschiedlichen räumlichen Strukturen genutzt werden, um die Farben des von den OLEDs abgestrahlten Lichts präzise zu steuern“, erklärt der Physiker Dominic Raithel M.Sc., Erstautor der jetzt in PNAS veröffentlichten Studie.

Wie die Bayreuther Forscher ebenfalls herausgefunden haben, besitzen gestreckte Polymere ein von ihren Seitenarmen gebildetes Gerüst, das die Streckung stabilisiert. „Daraus ergibt sich für Leuchtdioden ein besonderer Vorteil: Wenn gestreckte Polymere übereinander geschichtet werden, sorgen die Gerüste für Stabilität. Die Lichtemission wird dadurch nicht geschwächt“, sagt Raithel.

Vor kurzem hat er seine Dissertation im DFG-Graduiertenkolleg „Photophysics of Synthetic and Biological Multichromophoric Systems“ der Universität Bayreuth abgeschlossen. Hier werden natürliche und künstliche organische Materialien in enger interdisziplinärer Zusammenarbeit erforscht. So waren an der neuen Studie sowohl die Experimentalphysiker Prof. Dr. Anna Köhler und Prof. Dr. Jürgen Köhler als auch Prof. Dr. Mukundan Thelakkat als Experte für Funktionspolymere beteiligt.

Transatlantisches Zusammenspiel von Theorie und Experiment

Bei den vergleichenden experimentellen Untersuchungen der Polymere kamen verschiedene Spektroskopieverfahren zum Einsatz. „Entscheidend war dabei die Einzelmolekülspektroskopie bei sehr tiefen Temperaturen, für die uns hier in Bayreuth eine hochleistungsfähige Infrastruktur zur Verfügung steht. Mit dieser Methode konnten wir die Farben des emittierten Lichts und schließlich auch die Ausdehnung der Anregungsenergie über die kettenförmig aufgebauten Polymere bestimmen“, erklärt Dr. Richard Hildner, der die Forschungsarbeiten an der Universität Bayreuth koordiniert hat.

Die Bayreuther Wissenschaftler haben eng mit einer Arbeitsgruppe an der Rice University in Houston/Texas zusammengearbeitet. Hier wurden von Dr. Lena Simine und Prof. Dr. Peter J. Rossky umfangreiche Berechnungen zum Einfluss der Polymerstrukturen auf die Farbe des emittierten Lichts angestellt. Die Verbindung von experimentellen mit theoretischen Methoden führte schließlich zu Einblicken in die räumliche Struktur einzelner Polymerketten, die mit herkömmlichen bildgebenden Verfahren nicht möglich sind.

Veröffentlichung:

Dominic Raithel, Lena Simine, Sebastian Pickel, Konstantin Schötz, Fabian Panzer, Sebastian Baderschneider, Daniel Schiefer, Ruth Lohwasser, Jürgen Köhler, Mukundan Thelakkat, Michael Sommer, Anna Köhler, Peter J. Rossky and Richard Hildner: Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes, Proceedings of the National Academy of Sciences of the United States of America – PNAS 2018, vol. 115, no. 11, 2699-2704.
DOI 10.1073/pnas.1719303115

Forschungsförderung:

Die Forschungsarbeiten wurden gefördert von der Deutschen Forschungsgemeinschaft (DFG), vom Bayerischen Wissenschaftsministerium im Rahmen des Netwerks „Solar Technologies Go Hybrid“, vom Elitenetzwerk Bayern (ENB) sowie von der National Science Foundation (NSF) der USA. Prof. Dr. Michael Sommer (Universität Freiburg/TU Chemnitz) synthetisierte einige der untersuchten Polymere, Prof. Dr. Marin van Heel (Universität Leiden) entwickelte Algorithmen für die Datenanalyse.

Kontakt:

Dr. Richard Hildner
Experimentalphysik IV
Universität Bayreuth
Telefon: +49 (0) 921 55 4040
E-Mail: richard.hildner@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Berichte zu: Anregungsenergie DFG Leuchtdioden Licht OLEDs PNAS Polymere Polymerketten Rückgrat

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Netzspannung und Lastströme live und präzise im Blick
24.04.2018 | Karlsruher Institut für Technologie

nachricht Seilzugsensor MH60 – erfolgreicher Einsatz in rauer Umgebung
20.04.2018 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics