Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chancen der Nutzung von Geothermie in städtischen Ballungsräumen

16.11.2012
Gestern hat in Brüssel auf Initiative der EU-Kommission ein Workshop zur zukünftigen Rolle der Geothermie in Europas Wärmeversorgung stattgefunden.

An der Veranstaltung „Future Utilization of Geothermal Energy in Urban Areas”, bei der es um geothermische Strom- und Wärmeproduktion in urbanen Räumen ging, nahm auch EU-Kommissar Günther H. Oettinger als Redner teil.

Ausrichter waren zwei Mitgliedszentren der Helmholtz-Gemeinschaft, das Karlsruher Institut für Technologie (KIT) und das Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum GFZ.

„Urbane Ballungsräume sind Brennpunkte des Energieverbrauchs. In Deutschland allein gehen über 60 Prozent des Energieverbrauchs in die Wärmeversorgung. Der überwiegende Anteil davon stammt aus fossilen Brennstoffen. Das geothermische Potenzial in der Tiefe deckt ein Vielfaches dieses Bedarfes ab “, erklärte Prof. Dr. Jürgen Mlynek, Präsident der Helmholtz-Gemeinschaft Deutscher Forschungszentren. „Die Wärmeversorgung der Bundeshauptstadt beispielsweise beruht zu über 98 Prozent auf fossilen Energieträgern.

Geothermie aus tiefen Quellen kann hier Abhilfe schaffen. Die Helmholtz-Gemeinschaft hat ein umfangreiches Forschungsprogramm zur Tiefen Geothermie aufgesetzt, an dem ausgewiesene Experten der Helmholtz-Zentren in Potsdam und Karlsruhe, unterstützt durch das Helmholtz-Zentrum in Leipzig (UFZ), Lösungen für die Nutzbarkeit geothermischer Ressourcen entwickeln“, führte Mlynek weiter aus.

Tatsächlich ist die Geothermie eine Option erneuerbarer Energie mit enormem Potenzial: Der IPCC-Report 2011 weist aus, dass allein die obersten fünf Kilometer von Europas Erdkruste genug Energie enthalten, um Europa pro Jahr mit rund 4000 TWh Strom und 2000 TWh Wärme zu versorgen, was ungefähr dem Gesamtjahresverbrauch Europas entspricht. Da die Geothermie grundlastfähig, also nicht von den Schwankungen des Wetters abhängig ist, würde die Nutzung von fünf Prozent dieses Potenzials genügen, die Stromnetze bei einer Einspeisung von Wind- und Sonnenenergie zu stabilisieren. In Europa sind bereits zahlreiche geothermische Kraftwerke installiert oder aktuell in Planung, die pro Jahr aus Geothermie 86,1 TWh an Wärme und 14 TWh an Strom liefern können.

Damit werden bereits heute mehrere Milliarden Liter Heizöl eingespart. Insbesondere in urbanen Räumen können fossil betriebene Heizungen durch Geothermie in eine versorgungssichere und CO2-arme Wärmeversorgung überführt werden. In Deutschland eignet sich vor allem der süddeutsche Raum (Rheingraben, Oberbayern) für die intensive Nutzung der Geothermie als grundlastfähige Energiequelle, zumal die große Entfernung zu den Windparks in Norddeutschland und den Solarparks in Südeuropa umfangreiche Stromtrassen und Speichertechnologien erforderlich machen.

Die Helmholtz-Geothermieforschung steht im Einklang mit dem „Programm zur Geothermischen Energie“ („Joint Programme Geothermal Energy“) der europäischen Energieforschungsallianz EERA. Dort haben sich unter Leitung des GFZ 25 europäische Forschungsinstitute aus elf Ländern zusammengeschlossen, um gemeinsam an der Entwicklung kosteneffizienter Technologien für die nachhaltige Nutzung und den Ausbau der geothermischen Energie zu arbeiten. Kurzfristig zielt dieses Programm auf eine Zunahme der geothermisch erzeugten Elektrizität aus konventionellen Geothermiekraftwerken zwischen zwei und zehn Gigawatt. Obwohl sich hierfür besonders vulkanische Gebiete wie in Island eignen, lassen sich Geothermiesysteme ebenfalls in Gebieten mit geringerer thermischer Energie zum Beispiel als so genannte „Enhanced Geothermal Systems“ (EGS) nutzen. Diese Systeme werden in internationalen Kooperationen am KIT und GFZ erforscht, um standortunabhängig auch in urbanen Regionen wahlweise die Wärme- oder die Strom- und Wärmeversorgung im Grundlastbereich ergänzen zu können. Damit lässt sich der Verbrauch fossiler Energieträger in Ballungszentren nachhaltig reduzieren.

Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie sowie Luftfahrt, Raumfahrt und Verkehr. Die Helmholtz-Gemeinschaft ist mit fast 34.000 Mitarbeiterinnen und Mitarbeitern in 18 Forschungszentren und einem Jahresbudget von rund 3,4 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Ihre Arbeit steht in der Tradition des großen Naturforschers Hermann von Helmholtz (1821-1894).

www.helmholtz.de
www.helmholtz.de/socialmedia

Ansprechpartner für die Medien:

Dr. Andreas Fischer
Pressereferent
Tel.: 030 206 329-38
andreas.fischer@helmholtz.de

Janine Tychsen
Pressereferentin
Tel.: 030 206 329-24
janine.tychsen@helmholtz.de

Kommunikation und Medien
Büro Berlin
Anna-Louisa-Karsch-Str. 2
10178 Berlin

Dr. Andreas Fischer | Helmholtz-Gemeinschaft
Weitere Informationen:
http://www.helmholtz.de
http://www.helmholtz.de/socialmedia

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Sichere Nutzung von Wasserstoff für die Energiewende
25.07.2016 | Fraunhofer-Institut für Werkstoffmechanik IWM

nachricht Wussten Sie, dass UV-Licht für sicheres Baden während der Sommermonate sorgt?
25.07.2016 | Heraeus Noblelight GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superschneller Internetfunk dank Terahertz-Strahlung

Wissenschaftler aus Dresden und Dublin haben einen vielversprechenden technologischen Ansatz gefunden, der Notebooks und anderen mobilen Computern in Zukunft deutlich schnellere Internet-Funkzugänge ermöglichen könnte als bisher. Die Teams am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) und am irischen Trinity College Dublin brachten hauchdünne Schichten aus einer speziellen Verbindung von Mangan und Gallium dazu, sehr effizient Strahlung im sogenannten Terahertz-Frequenzbereich auszusenden. Als Sender in WLAN-Funknetzen eingesetzt, könnten die höheren Frequenzen die Datenraten zukünftiger Kommunikations-Netzwerke spürbar erhöhen.

„Wir halten diesen Ansatz für technologisch sehr interessant“, betont Dr. Michael Gensch, Leiter einer Arbeitsgruppe am HZDR, die sich mit den...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Forschen in 15 Kilometern Höhe - Einsatz des Flugzeuges HALO wird weiter gefördert

Das moderne Höhen-Forschungsflugzeug HALO (High Altitude and Long Range Research Aircraft) wird auch in Zukunft für Projekte zur Atmosphären- und Erdsystemforschung eingesetzt werden können: Die Deutsche Forschungsgemeinschaft (DFG) bewilligte jetzt Fördergelder von mehr als 11 Millionen Euro für die nächste Phase des HALO Schwerpunktprogramms (SPP 1294) in den kommenden drei Jahren. Die Universität Leipzig ist neben der Goethe-Universität Frankfurt am Main und der Technischen Universität Dresden federführend bei diesem DFG-Schwerpunktprogramm.

Die Universität Leipzig wird von der Fördersumme knapp 6 Millionen Euro zur Durchführung von zwei Forschungsprojekten mit HALO sowie zur Deckung der hohen...

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Rekord in der Hochdruckforschung: 1 Terapascal erstmals erreicht und überschritten

Einem internationalen Forschungsteam um Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky von der Universität Bayreuth ist es erstmals gelungen, im Labor einen Druck von 1 Terapascal (= 1.000.000.000.000 Pascal) zu erzeugen. Dieser Druck ist dreimal höher als der Druck, der im Zentrum der Erde herrscht. Die in 'Science Advances' veröffentlichte Studie eröffnet neue Forschungsmöglichkeiten für die Physik und Chemie der Festkörper, die Materialwissenschaft, die Geophysik und die Astrophysik.

Extreme Drücke und Temperaturen, die im Labor mit hoher Präzision erzeugt und kontrolliert werden, sind ideale Voraussetzungen für die Physik, Chemie und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress für Molekulare Medizin: Krankheiten interdisziplinär verstehen und behandeln

20.07.2016 | Veranstaltungen

Ultraschnelle Kalorimetrie: Gesellschaft für thermische Analyse GEFTA lädt zur Jahrestagung

19.07.2016 | Veranstaltungen

Das neue Präventionsgesetz aktiv gestalten

19.07.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Mineral-Kunststoff“ mit hohem Potenzial für die Zukunft

25.07.2016 | Materialwissenschaften

Neue Auslöser für eine schwere Krankheit

25.07.2016 | Biowissenschaften Chemie

TurboLight: Mehr Effizienz für Turbomaschinen durch Leichtbauweise mit Laserlicht

25.07.2016 | Materialwissenschaften