Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bezahlbare Hochwirkungsgrad-Solarzellen mit hochqualitativem n-Typ-Blocksilizium

10.04.2013
Kristallzüchter des Fraunhofer IISB in Erlangen erforschen im Verbundprojekt HENSi kostengünstiges n-Typ-Blocksilizium mit reduzierter Defektdichte und homogener Widerstandsverteilung für die Herstellung von Hocheffizienzsolarzellen.

Photovoltaik ist ein wichtiger Baustein für eine regenerative Energieversorgung. Die wirtschaftliche Erzeugung von Solarstrom erfordert aber Solarzellen mit maximalen Wirkungsgraden bei möglichst niedrigen Herstellungskosten. Geht es um technologische Konzepte für derartige Hocheffizienz-Solarzellen, wird oft Phosphor-dotiertes n-Typ-Silizium als Grundmaterial favorisiert.


Dr. Christian Reimann vom Fraunhofer IISB an der FuE-Bricon-G1-Kristallisationsanlage in Erlangen. Reimann erforscht im Projekt HENSi die kostengünstigere Herstellung von defektarmem und widerstandshomogenem n-Typ-Silizium für preiswerte Hochwirkungsgrad-Solarzellen durch gerichtete Erstarrung. Fraunhofer IISB

Gegenwärtig ist der Marktanteil von n-Typ-Solarzellen relativ gering, es dominieren Solarzellen aus Bor-dotiertem p-Typ-Material. Eine Ursache liegt darin begründet, dass die Herstellung der benötigten n-Typ-Siliziumkristalle vergleichsweise teuer ist bzw. mit weniger aufwändigen Herstellungsverfahren bislang nicht die erforderliche Materialqualität erreicht werden kann. Kristallzüchtungsexperten vom Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB in Erlangen wollen das im vom Bundesumweltministerium geförderten Verbundprojekt „HENSi – Hocheffizienz-Solarzellen auf defektreduziertem n-Typ mc Silizium“ ändern.

Gemeinsam mit Partnern aus der Industrie und Forschung entwickeln die Fraunhofer-Forscher die wissenschaftlich-technischen Grundlagen für die kostengünstigere Herstellung von n-Typ-Siliziumkristallen mit reduzierter Defektdichte und homogener Widerstandsverteilung.

n-Typ-Solarzellen basieren heute fast ausschließlich auf qualitativ hochwertigen monokristallinen Siliziumkristallen. Diese Siliziumkristalle werden im sogenannten Czochralski-Verfahren aus einer 1400 °C heißen Siliziumschmelze gezogen. Um im resultierenden Kristall gezielt den elektrischen Widerstand einzustellen, wird der Schmelze Phosphor als Dotierstoff zugegeben. Physikalisch bedingt steigt mit zunehmender Prozesszeit die Phosphorkonzentration sowohl in der Schmelze als auch im Kristall an. In der Folge variiert der elektrische Widerstand des Kristallmaterials zwischen Kristallanfang und Kristallende relativ stark. Für die Solarzellenfertigung werden die Einkristalle in Scheiben – so genannte Wafer – geschnitten, die entsprechend unterschiedliche Widerstandswerte aufweisen.
Die Herstellung von n-Typ-Solarzellen erfordert Wafer, deren elektrischer Widerstand möglichst einheitlich ist. Durch die Veränderung des elektrischen Widerstands im Kristallmaterial ist daher bei Phosphor-Dotierung im Normalfall die Ausbeute an Wafern, die pro Kristall innerhalb der geforderten elektrischen Spezifikation liegen, geringer als bei der standardmäßig für p-Typ-Material eingesetzten Bor-Dotierung. Daraus resultieren höhere Waferkosten, welche die Markterschließung für n-Typ-Solarzellen erschweren.

Im Projekt HENSi werden die n-Typ-Siliziumkristalle nicht mit dem Czochralski-Verfahren, sondern mit dem kostengünstigeren Verfahren der gerichteten Erstarrung hergestellt. Bei der gerichteten Erstarrung wird das Ausgangsmaterial in einem Tiegel aufgeschmolzen und anschließend durch kontrollierte Wärmeabfuhr kristallin erstarrt. Die so hergestellten Silizium-kristalle sind verfahrensbedingt multikristallin und enthalten Kristallfehler, die bislang verhindern, dass aus diesem Material n-Typ-Solarzellen mit höchsten Wirkungsgraden gefertigt werden können. Zum anderen variiert auch bei der gerichteten Erstarrung von Phosphor-dotiertem Silizium der elektrische Widerstand im Kristallmaterial.

Im Rahmen von HENSi sollen diese materialbedingten Probleme bei der gerichteten Erstarrung überwunden werden. Dazu wurde am Fraunhofer IISB in Erlangen eine spezielle FuE-Kristallisationsanlage installiert. Die für Temperaturen von bis zu 1800 °C ausgelegte Anlage wurde nach eigenen Vorgaben entwickelt. Der Kristallzüchtungsofen kann flexibel für unter-schiedliche FuE-Aufgaben im Rahmen der Materialoptimierung und Kostenreduktion in den Bereichen Energieerzeugung, Umwandlung und Speicherung eingesetzt werden. In der Anlage lassen sich im Technikums-Maßstab bis zu 30 kg schwere Kristalle im sogenannten G1-Format züchten. Durch eine entsprechende Aktuatorik und Sensorik werden die Kristallisati-onsvorgänge gezielt beeinflusst und optimiert, z.B. hinsichtlich Gefügestruktur und Fremdphasenbildung. Aus den G1-Kristallen können Wafer in der Industriedimension von 156 mm x 156 mm geschnitten werden. Speziell im Projekt HENSi werden diese Wafer von den Projektpartnern eingesetzt, um die Herstellungsprozesse für Hocheffizienzsolarzellen auf n-Typ-Material weiter zu entwickeln. Gelingt es den Forschern, die Defektdichte des gerichtet erstarrten n-Typ-Siliziummaterials deutlich zu senken und gleichzeitig den elektrischen Widerstand homogen einzustellen, sind wichtige Voraussetzungen geschaffen, um in Zukunft kostengünstige Hochleistungssolarzellen herzustellen.

Dr. Jochen Friedrich, Leiter der Abteilung Kristallzüchtung am Fraunhofer IISB in Erlangen, fasst zusammen: „Aufgrund der materialspezifischen Vorteile bilden n-Typ-Solarzellen die Grundlage für die meisten der zur Zeit weltweit in Entwicklung befindlichen Konzepte für High-end-Solarzellen. Der Marktanteil der n-Typ-Solarzellen ist heute noch sehr gering, soll aber gemäß diverser Roadmaps schon in den nächsten Jahren stark ansteigen. Vor diesem Hintergrund gewinnt die kostengünstigere Herstellung von n-Typ-Material höchster Qualität auch eine strategische Bedeutung.“

Das Verbundvorhaben „HENSi“ (Förderkennzeichen 0325449B) wird gefördert vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit aufgrund eines Beschlusses des Deutschen Bundestages.

Ansprechpartner:
Dr. Christian Reimann
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel. +49-9131-761-272
Fax +49-9131-761-280
christian.reimann@iisb.fraunhofer.de

Fraunhofer IISB:
Das 1985 gegründete Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB betreibt angewandte Forschung und Entwicklung auf den Gebieten Leistungselektronik, Mechatronik, Mikro- und Nanoelektronik. Mit seinen Arbeiten zu leistungselektronischen Systemen für Energieeffizienz, Hybrid- und Elektrofahrzeuge sowie zur Technologie-, Geräte- und Materialentwicklung für die Nanoelektronik genießt das Institut internationale Aufmerksamkeit und Anerkennung. Rund 180 Mitarbeiterinnen und Mitarbeiter arbeiten in der Vertragsforschung für die Industrie und öffentliche Einrichtungen. Neben seinem Hauptsitz in Erlangen betreibt das IISB weitere Standorte in Nürnberg und Freiberg. Das IISB kooperiert eng mit dem Lehrstuhl für Elektronische Bauelemente der Friedrich-Alexander-Universität Erlangen-Nürnberg.

Dr. Christian Reimann | Fraunhofer-Institut
Weitere Informationen:
http://www.iisb.fraunhofer.de/presse

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher entwickeln effizientere Systeme für Brennstoffzellen und Kraft-Wärme-Kopplung
19.04.2017 | EWE-Forschungszentrum für Energietechnologie e. V.

nachricht Forscher entwickeln Elektrolyte für Redox-Flow-Batterien aus Lignin aus der Zellstoffherstellung
18.04.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Auf dem Gipfel der Evolution – Flechten bei der Artbildung zugeschaut

27.04.2017 | Biowissenschaften Chemie

Elektroimpulse säubern Industriewässer und Lacke

27.04.2017 | Biowissenschaften Chemie

ZMP 2017 – Latenzzeitmesseinrichtung für moderne elektronische Zähler

27.04.2017 | Messenachrichten