Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bessere Solarzellen durch Weltraumexperimente

21.02.2012
Um den Partikeleinbau bei der Züchtung von Siliziumkristallen für die Photovoltaik besser zu verstehen, bereiten Forscher vom Fraunhofer IISB in Erlangen gerade das Weltraumexperiment ParSiWal vor.

Das Experiment soll klären, durch welche Mechanismen für die Materialeigenschaften nachteilige Siliziumkarbid-Partikel bei der Kristallisation in den Siliziumkristall eingebaut werden. Das Experiment wird 2013 auf der deutschen Forschungsrakete TEXUS 51 stattfinden – genau 30 Jahre nach dem ersten Erlanger Weltraumexperiment, das 1983 vom Wissenschaftsastronauten Ulf Merbold auf dem Space Shuttle während der 1. Spacelab-Mission durchgeführt wurde.


Start der Forschungsrakete TEXUS 48 am 27.11.2011 in Esrange bei Kiruna in Nordschweden.
Deutsches Zentrum für Luft- und Raumfahrt e.V. / Dr. Otfried Joop

Bei der industriellen Produktion von multikristallinen Siliziumblöcken für die Photovoltaik spielen Partikel in Form von Siliziumkarbid (SiC) eine große Rolle. Diese sind aufgrund ihrer gegenüber Silizium größeren Härte problematisch für die anschließende mechanische Bearbeitung. Zudem können sie in Solarzellen zu Kurzschlussströmen führen und damit den Wirkungsgrad verschlechtern. Der Einbau dieser Partikel in den Siliziumkristall muss deshalb vermieden werden. Die SiC-Partikel entstehen normalerweise während der Kristallisation in Folge eines Eintrages von Kohlenstoff über die Gasatmosphäre in die Siliziumschmelze beim Überschreiten der Löslichkeitsgrenze. Die Partikel schwimmen in der 1400 °C heißen Schmelze, bewegen sich mit der Schmelzkonvektion durch das Schmelzvolumen und können schließlich in den Festkörper eingebaut werden.

Verschiedene theoretische Arbeiten sagen vorher, dass der Einbau der Partikel von der Geschwindigkeit abhängt, mit der der Kristall erstarrt. Ist die Wachstumsgeschwindigkeit kleiner als ein kritischer Wert, sollten die Partikel theoretisch vor der Festflüssig-Phasengrenze hergeschoben werden. Wird der kritische Wert überschritten, werden sie von der sich bewegenden Phasengrenze eingefangen und in den Kristall eingebaut. Wendet man diese für metallische Legierungen anerkannten Theorien auf Siliziumkristalle an, die im Labor auf der Erde gezüchtet werden, dürften diese eigentlich nie die nur wenige Mikrometer großen SiC-Partikel enthalten, da die Wachstumsrate des Kristalls so klein ist, dass die Partikel immer vor der Phasengrenze hergeschoben werden müssten. Dies widerspricht aber voll und ganz den experimentellen Beobachtungen und der Realität in den industriellen Prozessen.

Hier kommt nun die Schwerelosigkeit ins Spiel. Die Schwerkraft hat einen maßgeblichen Einfluss auf die Strömung in der Siliziumschmelze, die ihrerseits wiederum die Verteilung der Partikel im Schmelzvolumen bestimmt. Die Schwerkraft wirkt auch direkt auf die Partikel und lässt sie beispielsweise absinken, wenn die Partikel eine höhere Dichte besitzen als die Schmelze, was bei den SiC-Partikeln in der Siliziumschmelze auch der Fall ist. Im Weltall unter Schwerelosigkeit sind diese schwerkraftgetriebenen Effekte jedoch ausgeschaltet. Das verringert die Komplexität der Vorgänge erheblich und erleichtert damit auch deren physikalische Beschreibung. Somit kann unter Schwerelosigkeit geprüft werden, ob die existierenden Theorien für den Partikeleinfang auch bei Silizium gültig sind oder ob diese Theorien für Silizium erweitert werden müssen, um bislang noch nicht berücksichtigte physikalische Effekte zu erfassen.

Das Akronym ParSiWal steht für „Bestimmung der kritischen Einfanggeschwindigkeit von Partikeln bei der gerichteten Erstarrung von Solarsilizium im Weltall“. ParSiWal ist eines der wissenschaftlichen Experimente, die während des Fluges der Forschungsrakete TEXUS 51 durchgeführt werden. In dem seit 1976 vom Bundesministerium für Bildung und Forschung (BMBF) und vom Bundesministerium für Wirtschaft und Technologie (BMWi) über das DLR-Raumfahrtmanagement geförderten TEXUS-Programm („Technologie-Experimente unter Schwerelosigkeit“) wird mit Hilfe von Forschungsraketen für etwa sechs Minuten Experimentierzeit eine annähernde Schwerelosigkeit erreicht. Die Forschungsrakete startet von Esrange bei Kiruna in Nordschweden und erreicht in ihrem ballistischen Flug eine Gipfelhöhe von bis zu 270 Kilometern. Die Nutzlast landet etwa 20 Minuten nach dem Start am Fallschirm und wird anschließend per Hubschrauber geborgen.

Das ParSiWal-Experiment wird in einer mit Lampen beheizten Ofenanlage, der sogenannten ELLI-Anlage, durchgeführt. Die Anlage wurde bereits mehrfach erfolgreich als Nutzlast in Texus-Raketen für Kristallzüchtungsexperimente eingesetzt. Vor der Mission wird dazu ein zylindrischer Siliziumstab mit 8 Millimetern Durchmesser in die Ofenanlage eingesetzt, der ein Depot an Partikeln unterschiedlicher Größe enthält. Kurz nach Erreichen der Schwerelosigkeit wird in dem Siliziumstab in der Umgebung des Partikel-Depots durch eine Induktionsspulenheizung eine flüssige Schmelzzone erzeugt. Nachdem die Partikel durch sogenanntes Magnetfeldrühren in der Schmelzzone verteilt werden, wird der Siliziumstab verfahren. Dadurch bewegt sich die Schmelzzone durch den Stab und somit auch die Festflüssig-Phasengrenze. Durch Variation der Verfahr- bzw. Kristallisationsgeschwindigkeit während des Fluges hoffen die Fraunhofer-Forscher, die kritische Einfanggeschwindigkeit für die Partikel bestimmen zu können. Vor dem Ende der schwerelosen Flugphase wird die Lampenheizung ausgeschaltet, so dass die Schmelzzone komplett erstarrt, bevor die Nutzlast am Fallschirm wieder auf der Erde landet. Die Auswertung des Experimentes erfolgt dann im Labor, wo zum Beispiel die Partikelverteilung im Siliziumstab vermessen wird.

Bis zum Flug ist einiges vorzubereiten, damit das Experiment reibungslos ablaufen kann. Es müssen verschiedene Siliziumstäbe für Voruntersuchungen, für Referenzexperimente auf der Erde und für das eigentliche Flugexperiment vorbereitet werden. Darüber hinaus sind die Charakterisierungsmethoden zu etablieren, um später das Flugexperiment auswerten zu können. In Voruntersuchungen im Labor müssen verschiedene Versuchsparameter ausgetestet werden, so dass sich ein optimaler Prozessablauf für das TEXUS-Experiment ergibt. Parallel zu den Experimenten gilt es, durch die Entwicklung geeigneter Theorien und Simulationstechniken ein tiefergehendes Verständnis über die Wechselwirkung zwischen den Partikeln und der sich bewegenden Phasengrenze zu gewinnen.

All diese Arbeiten erfordern unterschiedlichste Kompetenzen und Erfahrungen. Deshalb kooperieren die Forscher vom Fraunhofer IISB mit den Experten vom Kristallographischen Institut der Universität Freiburg, die bereits mehrfach Siliziumkristalle unter Schwerelosigkeit gezüchtet haben, und mit Wissenschaftlern vom Lehrstuhl für Material- und Prozesssimulation der Universität Bayreuth sowie vom Institut für Chemische Verfahrenstechnik und Materialwissenschaft der Universität von Minnesota, USA. Die Teams aus Bayreuth und Minnesota sind ausgewiesene Spezialisten in der numerischen Modellierung, speziell in der Mehrskalensimulation, die notwendig ist, um die Wechselwirkung der Partikel mit der sich bewegenden Phasengrenze beschreiben zu können.

Das ParSiWal-Projekt ist Bestandteil des Programms Forschung unter Weltraumbedingungen des Deutschen Zentrums für Luft und Raumfahrt e.V. (DLR) und wird vom DLR-Raumfahrtmanagement für die nächsten drei Jahre mit Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) gefördert.

Für die Erlanger Forscher wird es das 8. Weltraumexperiment auf dem Gebiet der Kristallzüchtung seit 1983 sein. Zudem wird die in Erlangen am Fraunhofer IISB entwickelte Software CrysMAS®, die Temperaturverteilungen in Ofenanlagen berechnet und ein aufwendiges Qualifizierungsverfahren bei der Europäischen Raumfahrtagentur ESA durchlaufen hat, seit nunmehr einigen Jahren erfolgreich von Experimentatoren aus ganz Europa eingesetzt, um materialwissenschaftliche Experimente auf der Internationalen Raumstation zu unterstützen.

Ansprechpartner
Dr. Jochen Friedrich
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel. +49-9131-761-270
Fax +49-9131-761-280
info@iisb.fraunhofer.de
Fraunhofer IISB
Das 1985 gegründete Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB betreibt angewandte Forschung und Entwicklung auf den Gebieten der Mikro- und Nanoelektronik, Leistungselektronik und Mechatronik. Mit Technologie-, Geräte- und Materialentwicklungen für die Nanoelektronik sowie seinen Arbeiten zu leistungselektronischen Systemen für Energieeffizienz, Hybrid- und Elektroautomobile genießt das Institut internationale Aufmerksamkeit und Anerkennung. Rund 170 Mitarbeiterinnen und Mitarbeiter arbeiten in der Vertragsforschung für die Industrie und öffentliche Einrichtungen. Neben seinem Hauptsitz in Erlangen hat das IISB zwei weitere Standorte in Nürnberg und Freiberg. Das IISB kooperiert eng mit dem Lehrstuhl für Elektronische Bauelemente der Friedrich-Alexander-Universität Erlangen-Nürnberg.

| Fraunhofer-Institut
Weitere Informationen:
http://www.iisb.fraunhofer.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Solarenergie: Defekte in Kesterit-Halbleitern mit Neutronen untersucht
07.12.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Plug&Play-Lichtlösung für die NOx-Messung
07.12.2017 | Heraeus Noblelight GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie