Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Berührungsempfindliche Elektronik mit der Schere zurechtschneiden

08.10.2013
Ist eine Hose zu lang, wird sie gekürzt, passt ein Brett nicht in ein Regal, wird es zurechtgesägt.

Bei Materialien wie Stoff oder Holz ist dies ganz normal, viele Menschen machen es sogar selbst, ohne Spezialisten wie Schneider und Tischler zu beauftragen. In Zukunft soll dies auch für Elektronik gelten, so die Vision Saarbrücker Informatiker.


Selbst Schnitte (b) können den gedruckten Schaltkreisen (a) aus Saarbrücken nichts anhaben (c). Universität des Saarlandes

Zusammen mit Forschern des US-amerikanischen MIT Media Lab haben sie einen berührungsempfindlichen Sensor entwickelt, dessen Form und Größe jeder mit der Schere nach Belieben ändern kann. Dass dabei die Elektronik trotz Schnitten und entfernter Stücke weiter funktioniert, ermöglicht eine neuartige Anordnung der gedruckten Schaltkreise.

Ihre Arbeit präsentieren die Wissenschaftler ab heute auf der Konferenz „User Interface Software and Technology“ (UIST) im schottischen St. Andrews.

„Stellen Sie sich vor, ein Kind nimmt das von uns entwickelte Sensor-Papier und schneidet sich eine Blume in Form einer Blüte samt Stiel und Blättern aus. Berührt es nun die Blüte, ertönt das Brummen einer Hummel“, beschreibt Jürgen Steimle eine mögliche Anwendung.

Für die Zukunft seien auch zahlreiche einfache Programme oder Apps denkbar, über die Eltern die gedruckten Sensoren mit dem entsprechenden Effekt verknüpfen könnten. Steimle ist 33 Jahre alt, promovierter Informatiker und forscht am Max-Planck-Institut für Informatik in Saarbrücken. Er leitet außerdem eine Forschungsgruppe am Exzellenzcluster der Saar-Uni.

Sein Doktorand Simon Olberding, der den Sensor federführend entwickelt hat, sieht eine Anwendung auch in interaktiven Wänden, die man für Diskussionen einsetzt. „Bisher nutzen sich solche Arbeitswände schnell ab, weil wir Nägel reinschlagen, Notizen und Poster aufkleben und beim Abreißen die darunterliegende Tapete gleich mit entfernen. Durch das Zurechtschneiden und Aufkleben der neuartigen Sensor-Folie könnte man die Oberfläche interaktiv gestalten, egal ob es sich dabei um das Armband einer Uhr, eine Decke auf einem Messetisch oder die Tapete an einer Wand handelt“, sagt Olberding.

Als Basistechnologie dient den Wissenschaftlern sogenannte „Gedruckte Elektronik“. Unter diesem Begriff fasst man Bauelemente, Komponenten und Anwendungen zusammen, die teilweise oder sogar vollständig gedruckt werden. Die Verfahren ähneln Tintenstrahldruckern. Anstelle von Drucktinte auf Papier werden hier jedoch Strom leitende Flüssigkeiten auf dünne, flexible Folien, sogenannte Substrate, gebannt. „Die Herstellungskosten dafür sind inzwischen so gering, dass der Druck unserer Folie im DIN-A4-Format auf einem Spezialdrucker im Labor nur knapp einen US-Dollar kostet“, so Steimle.

Doch das alleine reichte nicht aus, um den Sensor unverwundbar gegen Schnitte, Beschädigungen und das Abtrennen ganzer Bereiche zu machen. Bisher ähnelte der Schaltplan eines Multitouch-Sensors dem Karopapier in Rechenheften: Die Drähte verlaufen vertikal und horizontal, an ihren Schnittpunkten sitzen die berührungsempfindlichen Elektroden, bilden Reihen und Spalten. Über die Drähte sind sie mit einer Steuereinheit verbunden. Auf diese Weise ist zwar nur eine minimale Anzahl von Drähten notwendig, jedoch ist dieses Schaltungslayout auch anfällig für Störungen. Da ein Draht gleich mehrere Elektroden miteinander verbindet, ist der Schaden umso größer, wenn er durchtrennt wird. „Es war nicht leicht eine Anordnung zu finden, die für unsere Zwecke robust genug ist“, erklärt Olberding. Bei ihrer Suche ließen sich die Forscher von Vorbildern aus der Natur inspirieren, etwa dem menschlichen Nervensystem und dem Wurzelgeflecht von Pilzen.

Zwei Grundlayouts erfüllten ihre Anforderungen. Bei der so genannten Stern-Topologie sitzt die Steuereinheit im Zentrum und ist von dort aus mit jeder Elektrode separat verbunden. Bei der Baum-Topologie sitzt die Steuereinheit ebenfalls in der Mitte und ist auch mit jeder Elektrode verbunden. Allerdings sind die Drähte dabei so gebündelt, dass ihr Verlauf einer Baumstruktur entspricht. Erst bilden sie alle einen horizontalen Ast, die das Elektrodenfeld in zwei Hälfen ausspaltet. Dann verzweigen sie sich, um ihre jeweilige Elektrode zu erreichen.

Die Forscher fanden in ihren Tests heraus, dass sich die Stern-Topologie sehr gut für häufig verwendete Grundformen wie Dreieck, Rechteck oder Ovale eignet. Darüber hinaus unterstützt sie auch speziellere Formen wie Stern, Wolke und Herz. Komplementär dazu ist die Baum-Topologie. Diese ermöglicht es eher, ganze Bereiche herauszuschneiden. Die Wissenschaftler konnten außerdem beide Layouts platzschonend miteinander kombinieren, damit der neuartige Sensor für eine Vielzahl von Zuschnitten verwendet werden kann.

„Wir wollen eine neue Art von Material schaffen, das Anwender zum Beispiel in Schreibwaren-Abteilungen kaufen können. Es soll so preiswert sein, dass sie dieses für interaktive Anwendungen oder auch nur als Schreibunterlage nutzen können“, so Steimle. Dass diese Vision schon bald real werden könnte, lässt eine Prognose der „Organic and Printed Electronic Association“ vermuten. Der internationale Industrieverband sagt vorher, dass für End-Anwender flexible Elektronik zwischen 2017 und 2020 verfügbar sein wird.

Weitere Informationen:
http://embodied.mpi-inf.mpg.de/research/cuttable-multi-touch-sensor/
Publikation:
Simon Olberding, Nan-Wei Gong, John Tiab, Joseph A. Paradiso and Jürgen Steimle. A Cuttable Multi-touch Sensor. In Proc. UIST 2013 (Full Paper). http://embodied.mpi-inf.mpg.de/files/2012/11/ACuttableMultiTouchSensor.pdf
Video:
http://www.youtube.com/watch?v=wnTG_ZTYdVk
Bildmaterial:
www.uni-saarland.de/pressefotos
Weitere Fragen beantworten:
Dr. Jürgen Steimle
Max-Planck-Institut für Informatik
E-Mail: jsteimle@mpi-inf.mpg.de
Simon Olberding
Max-Plank-Institut für Informatik
E-Mail: solberdi@mpi-inf.mpg.de
Redaktion:
Gordon Bolduan
Wissenschaftskommunikation
Kompetenzzentrum Informatik Saarland
E-Mail: bolduan@mmci.uni-saarland.de
Tel: +49 681 302 70741
Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Friederike Meyer zu Tittingdorf | idw
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher vereinfachen Installation und Programmierung von Robotersystemen
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Care-O-bot® 4 macht sich selbstständig
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik