Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Silizium-Dünnschichtsolarzellen auf dem Vormarsch

05.04.2002


11,2 Prozent lautet die neueste Zahl aus den Labors des Instituts für Photovoltaik (IPV) des Forschungszentrums Jülich. Diesen stabilen Wirkungsgrad haben die Wissenschaftler bei einer ein Quadratzentimeter großen Silizium-Dünnschichtsolarzelle erzielt. Im nächsten Schritt gilt es, das erfreuliche Ergebnis auf größere Solarmodule zu übertragen. Auch hier haben die Jülicher bereits erste Erfolge vorzuweisen und die Forschungen laufen weiterhin auf Hochtouren.

Sonnenlicht preiswert direkt in Strom zu wandeln ist ein wichtiges Ziel moderner Energieforschung. Silizium-Dünnschichtsolarzellen versprechen vergleichsweise geringere Kosten als herkömmliche Solarzellen. Doch um ein Massenprodukt der Zukunft zu werden, müssen die Wirkungsgrade großflächiger Module im Langzeitbetrieb von zurzeit etwa 6 bis 7 Prozent erst auf 10 Prozent klettern. Im Labormaßstab haben Jülicher Wissenschaftler nun eine Silizium-Dünnschichtsolarzelle hergestellt, deren Wirkungsgrad auch nach über 1000 Stunden Sonneneinstrahlung bei stabilen 11,2 Prozent lag. Damit haben sie eine erste Hürde auf dem Weg zum marktreifen Produkt mit Erfolg genommen.

Silizium-Dünnschichtsolarzellen bestehen aus mehreren Schichten, die mithilfe verschiedener Techniken im Vakuum auf einem Glassubstrat abgeschieden werden. Durch eine erste Schicht aus transparentem und leitfähigem Metalloxid (TCO= transparent conductive oxide) fällt das Sonnenlicht auf die Silizium-Schicht: Hier wird es geschluckt und die dabei erzeugten Ladungsträger nach außen abtransportiert - fertig ist der Solarstrom.

Bewährt hat sich das Konzept der Stapelzellen mit mehreren übereinander liegenden Silizium-Schichten. Zudem steigt der Wirkungsgrad, wenn eine Schicht aus dem für Dünnschichtsolarzellen üblichen amorphen Silizium besteht und eine zweite aus einer weiteren Variante, dem mikrokristallinen Silizium. "Mit einer solchen Tandemzelle haben wir die 11,2 Prozent erzielt", freut sich Dr. Bernd Rech vom IPV, "das war sozusagen Stufe eins. Die wirklichen Vorteile der Dünnschichttechnologie zeigen sich dann in Stufe zwei, beim Übergang von einer einzelnen Zelle zum Solarmodul."

In einem Solarmodul sind viele einzelne Solarzellen in Serie geschaltet, daher addieren sich deren Spannungen. Bei herkömmlichen Modulen werden einzelne Solarzellen angefertigt und anschließend durch Kontakte miteinander verbunden. Bei der Dünnschichttechnologie dagegen ist die Verschaltung bereits in die Herstellung integriert: Ein Laser schneidet die Metalloxid- und die Silizium-Schicht jeweils gleich, nachdem sie auf einem großflächigen Glassubstrat abgeschieden wurden, in einzelne Streifen; diese Streifen sind dann elektrisch in Serie geschaltet.

Die Jülicher Wissenschaftler arbeiten daran, eine komplette Prozesstechnologie für solche großflächigen (30 x 30 Quadratzentimeter großen) Glassubstrate aufzubauen. Die Silizium-Beschichtung funktioniert bereits, Anlagen zur Metalloxid-Beschichtung sowie zum Laserschneiden sollen in der zweiten Jahreshälfte im Rahmen eines Workshops eingeweiht werden. "Wir wollen keine Rekorde in Einzeldisziplinen aufstellen, sondern Mehrkampfmeister werden und einen in dieser Form einzigartigen Komplettansatz liefern", erläutert Bernd Rech das Jülicher Konzept, "unser Ziel ist ein industrienah und kostengünstig hergestellter, technologisch ausgereifter Prototyp."

Dass sich die guten Wirkungsgrade ihrer Tandemzellen vom Labormaßstab tatsächlich auf industrielle Größen aufskalieren lassen, haben die Jülicher Wissenschaftler auch schon gezeigt: Dazu arbeiten sie mit dem Industriepartner RWE Solar GmbH, Geschäftsgebiet Phototronics, zusammen, der bereits seit vielen Jahren 0,6 Quadratmeter (6000 Quadratzentimeter) große Dünnschichtmodule auf Basis des amorphen Siliziums herstellt. Ein Modul des neuen Jülicher Aufbaus mit einer aktiven Fläche von immerhin schon 644 Quadratzentimetern zeigte einen Anfangswirkungsgrad von 10,3 Prozent. Doch der ist durchaus ausbaufähig, ist sich Bernd Rech sicher, denn das für das Testmodul benutzte Glassubstrat war bereits mit einem kommerziellen TCO vorbeschichtet. In Jülich verfolgen die Wissenschaftler aber einen neuen Ansatz: Sie verwenden Zinkoxid als TCO, das durch Sputtern auf das Glas aufgebracht wird. Sputtern ist ein gängiges Verfahren, mit dem beispielsweise in der Glasindustrie Isolierglasscheiben gefertigt werden. Aufgeraut mit Salzsäure ist Zinkoxid zudem ein exzellenter Lichtfänger. "Auch unsere 11,2 Prozent Einzel-Zelle enthielt dieses Zinkoxid. Durch die Kombination von neuen Materialien mit ausgefeilter Prozesstechnologie werden wir auch bei großflächigen Dünnschichtmodulen dem Wirkungsgrad herkömmlicher Solarmodule nahe kommen", prophezeit Bernd Rech, "und langfristig wird sich die preiswertere Dünnschichttechnologie auf dem Markt durchsetzen."

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de/oea/PM2002/2002-11-Solarzelle_ob.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle
17.08.2017 | Universität Potsdam

nachricht Lasersensoren LAH-G1 – Optische Abstandssensoren mit Messwertanzeige
15.08.2017 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie