Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Transatlantische Energieforschung

13.07.2007
Forschungszentrum Jülich und Oak Ridge National Laboratory arbeiten auf dem Gebiet der Brennstoffzellen enger zusammen

Zwei der größten Forschungszentren der Welt haben ihre Zusammenarbeit bekannt gegeben. Das Forschungszentrum Jülich und das amerikanische Oak Ridge National Laboratory wollen gemeinsam Materialien und Methoden entwickeln, um günstige, leistungsfähige Brennstoffzellensysteme für Transport und Stromversorgung zu ermöglichen. Vertreter der Zentren unterschrieben in dieser Woche den Kooperationsvertrag.

Konkret wollen sich die Vertragspartner bei der Analyse und Charakterisierung von Werkstoffen unterstützen. Dabei wird das Oak Ridge National Laboratory seine Kompetenzen bei Bild gebenden Verfahren der Materialforschung und bei chemischen Analysen von Festkörpern und Oberflächen einbringen. Das Forschungszentrum Jülich ist Technologieführer im Bereich Direktmethanol-Brennstoffzelle, also bei der Entwicklung von Materialien, der Produktion von Zellen und Zellenstapeln sowie beim Bau und der Charakterisierung von Gesamtsystemen.

In Jülich arbeitet die weltweit größte Wissenschaftlergruppe in der öffentlichen Brennstoffzellenforschung. Dabei spielt die lückenlose Prozessanalyse eine entscheidende Rolle, um den Bogen von der grundlagenorientierten Materialforschung zu Markt orientierten Brennstoffzellensystemen erfolgreich zu spannen. "Wir wollen alle Aspekte im Auge halten und auf einander abstimmen. Nur so lässt sich das komplexe System Brennstoffzelle wirtschaftlich machen", erklärt Prof. Detlef Stolten, Direktor am Jülicher Institut für Energieforschung.

Auf der diesjährigen Hannover Messe stellte das Forschungszentrum einen Prototyp seines Brennstoffzellensystems für Paletten-Hubwagen vor. Eine Brennstoffzelle wandelt die chemische Energie des flüssigen Methanols direkt in elektrischen Strom für den Antrieb um. Statt langer Akku-Ladezeiten lässt sich das Gefährt wie ein Auto in wenigen Minuten betanken. Trotzdem ist es in geschlossenen Räumen nutzbar, da es extrem schadstoffarm ist.

Brennstoffzellen wandeln chemische Energie lautlos und umweltfreundlich direkt in elektrischen Strom um. Wasserstoffgas oder Methanol strömen dazu über eine spezielle Protonen leitende Membran. Zwischen den beiden Seiten der Membran baut sich eine elektrische Spannung auf, die wie bei einer Batterie abgenommen werden kann. Aufgrund ihres sehr hohen Wirkungsgrades sind Brennstoffzellen eine wichtige Option für den Klimaschutz. Direktmethanol-Brennstoffzellen sollen als Ersatz für Akkumulatoren kurzfristige in Nischen Anwendung finden und langfristig den breiten Markt erreichen.

Pressekontakt:
Kosta Schinarakis, Tel. 02461 61- 4771, E-Mail: k.schinarakis@fz-juelich.de

Kosta Schinarakis | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/
http://www.fz-juelich.de/portal/index.php?index=721&cmd=show&mid=468

Weitere Berichte zu: Brennstoffzelle Energieforschung

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie