Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabiles Plasma für ITER

18.06.2007
Zum Betrieb künftiger Fusionskraftwerke muss es gelingen, den heißen Brennstoff gut wärmeisoliert einzuschließen. Der dazu benutzte magnetische Käfig muss daher möglichst robust sein. Ausgerechnet bei den besonders interessanten "fortgeschrittenen" Betriebsweisen, die im internationalen Fusionstestreaktor ITER geplant sind, sind jedoch störende Instabilitäten zu erwarten: So genannte "Externe Kink-Moden" könnten die von ITER erreichbare Fusionsausbeute empfindlich absenken. Gegenmaßnahmen wurden nun vom Max-Planck-Institut für Plasmaphysik (IPP) in europäischem Auftrag untersucht. Das dazu entwickelte neue Rechenprogramm "Starwall" darf als weltbestes seiner Art gelten - dank der Expertise der Stellarator-Fachleute im IPP, die in diesen Tokamak-Code eingeflossen ist.

Ziel der weltweiten Bemühungen um die Kernfusion ist die Entwicklung eines Kraftwerks, das - ähnlich wie die Sonne - Energie aus der Verschmelzung von Atomkernen gewinnt. Zum Zünden des Fusionsfeuers muss der Brennstoff, ein Wasserstoff-Plasma, auf Temperaturen über 100 Millionen Grad aufgeheizt werden. Nächster großer Schritt der Forschung ist die internationale Testanlage ITER (lat.: "der Weg"). Sie soll über längere Zeit eine Fusionsleistung von 500 Megawatt liefern - zehnmal mehr, als zur Aufheizung des Plasmas verbraucht wird. Der Bau der Anlage soll im kommenden Jahr in Cadarache/Südfrankreich beginnen.

Um die hohe Temperatur aufrechterhalten zu können, muss es gelingen, den Brennstoff in Magnetfeldern berührungsfrei und wärmeisolierend einzuschließen. Das komplexe Wechselspiel zwischen Plasmateilchen und magnetischem Käfig macht jedoch eine ganze Reihe von Instabilitäten möglich, die den Einschluss stören. In den bisherigen Anlagen ohne große Bedeutung, aber äußerst unerwünscht im Fusionstestreaktor ITER sind so genannte "Externe Kink-Instabilitäten", die das einschließende Magnetfeld verformen: Die entstehenden schlauchförmigen Ausbeulungen und Dellen an der Außenseite des Plasmas verschlechtern den Einschluss und senken damit die Fusionsausbeute. Bei ITER würden sie - so die IPP-Rechnungen - genau in den Plasmazuständen auftreten, auf die man bei der Entwicklung eines dauerbetriebsfähigen Tokamak setzt.

Gegenmaßnahmen sind jedoch möglich: Umschlossen von einer unendlich leitfähigen - bzw. supraleitenden - Wand, könnten sich die Instabilitäten gar nicht erst ausbilden. Die Plasmabewegung induziert nämlich elektrische Ströme in der Wand, deren magnetisches Feld der Ursache entgegen wirkt: Das Plasma wird stabilisiert. Eine "normale" Stahlwand kann die Ausbildung der Kink-Instabilitäten immerhin noch abbremsen - von Mikro- auf Millisekunden. Der Prozess wird damit langsam genug, dass ein automatisches Feedback-System eingreifen kann. Schwache elektrische Kontrollströme, die in kleinen, an der Wand befestigten Magnetspulen fließen, können die Beulen und Dellen bereits vor dem Anwachsen "einfangen" und auflösen. Sie simulieren quasi die magnetische Antwort einer supraleitenden Wand auf die Bewegungen des Plasmas.

... mehr zu:
»Brennstoff »ITER »Plasma »Raumdimension »Tokamak

Damit dies technisch funktionieren kann, muss man die Vorgänge präzise beschreiben und berechnen können. Dabei profitieren Rechnungen für Fusionsanlagen vom Typ Tokamak - zu denen ITER gehört - gewöhnlich vom einfachen Aufbau dieser Experimente. Das ringförmige Plasmagefäß, der magnetische Ringkäfig und das darin eingeschlossene ringförmige Plasma haben eine axialsymmetrische Gestalt: Beim Umlaufen um diesen Ring gibt es keine Änderungen. Entsprechend genügt es daher meist, mit nur zwei Raumdimensionen zu rechnen. Will man aber die elektro-magnetischen Wechselwirkungen zwischen dem Plasma und der Gefäßwand beschreiben, ist zu berücksichtigen, dass trotz der allgemeinen Symmetrie die Wand nicht überall gleich ist. An einigen Stellen besitzt sie große Öffnungen, die das Plasma für Heizungen, Pumpen und Messgeräte zugänglich machen. Für das genaue Berechnen der Kink-Instabilitäten und ihre Stabilisierung durch die Wand sind damit alle drei Raumdimensionen wichtig.

Genau dies kann der neu entwickelte IPP-Rechencode "Starwall". Er beschreibt - weltweit einmalig - Plasma und Gefäßwände in allen drei Raumdimensionen. Profitiert haben die Tokamak-Theoretiker dabei von der Zusammenarbeit mit der Stellarator-Theorie: Stabilitätscodes für Fusionsanlagen vom Typ Stellarator - wie der im IPP-Teilinstitut Greifswald entstehende Wendelstein 7-X - sind nämlich immer dreidimensional. Denn Stellaratoren mit ihrem bizarren Spulensystem besitzen die vereinfachende Symmetrie der Tokamaks nicht. Ohne diese Vorarbeit der Stellarator-Theoretiker wäre die Entwicklung viel zu aufwändig gewesen.

Die Rechnungen mit "Starwall" für ITER zeigen: Mit einem Feedback-System könnten die ITER-Entladungen bis zu einem Plasmadruck stabil bleiben, der - je nach Druck- und Stromprofilen im Plasma - um 50 Prozent höher liegt als ohne Stabilisierung: Ein großer Fortschritt. Experimentelle Voruntersuchungen sind an der Garchinger Tokamak-Anlage ASDEX Upgrade geplant: Mit 24 Kontrollspulen und einer Wand nahe am Plasma will man für ITER untersuchen, wie gut sich die Kink-Instabilitäten beeinflussen lassen.

Isabella Milch | idw
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Berichte zu: Brennstoff ITER Plasma Raumdimension Tokamak

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht »ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern
18.10.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Intelligentes Lademanagement entwickelt – Forschungsprojekt ePlanB abgeschlossen
18.10.2017 | Forschungsstelle für Energiewirtschaft e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik