Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabiles Plasma für ITER

18.06.2007
Zum Betrieb künftiger Fusionskraftwerke muss es gelingen, den heißen Brennstoff gut wärmeisoliert einzuschließen. Der dazu benutzte magnetische Käfig muss daher möglichst robust sein. Ausgerechnet bei den besonders interessanten "fortgeschrittenen" Betriebsweisen, die im internationalen Fusionstestreaktor ITER geplant sind, sind jedoch störende Instabilitäten zu erwarten: So genannte "Externe Kink-Moden" könnten die von ITER erreichbare Fusionsausbeute empfindlich absenken. Gegenmaßnahmen wurden nun vom Max-Planck-Institut für Plasmaphysik (IPP) in europäischem Auftrag untersucht. Das dazu entwickelte neue Rechenprogramm "Starwall" darf als weltbestes seiner Art gelten - dank der Expertise der Stellarator-Fachleute im IPP, die in diesen Tokamak-Code eingeflossen ist.

Ziel der weltweiten Bemühungen um die Kernfusion ist die Entwicklung eines Kraftwerks, das - ähnlich wie die Sonne - Energie aus der Verschmelzung von Atomkernen gewinnt. Zum Zünden des Fusionsfeuers muss der Brennstoff, ein Wasserstoff-Plasma, auf Temperaturen über 100 Millionen Grad aufgeheizt werden. Nächster großer Schritt der Forschung ist die internationale Testanlage ITER (lat.: "der Weg"). Sie soll über längere Zeit eine Fusionsleistung von 500 Megawatt liefern - zehnmal mehr, als zur Aufheizung des Plasmas verbraucht wird. Der Bau der Anlage soll im kommenden Jahr in Cadarache/Südfrankreich beginnen.

Um die hohe Temperatur aufrechterhalten zu können, muss es gelingen, den Brennstoff in Magnetfeldern berührungsfrei und wärmeisolierend einzuschließen. Das komplexe Wechselspiel zwischen Plasmateilchen und magnetischem Käfig macht jedoch eine ganze Reihe von Instabilitäten möglich, die den Einschluss stören. In den bisherigen Anlagen ohne große Bedeutung, aber äußerst unerwünscht im Fusionstestreaktor ITER sind so genannte "Externe Kink-Instabilitäten", die das einschließende Magnetfeld verformen: Die entstehenden schlauchförmigen Ausbeulungen und Dellen an der Außenseite des Plasmas verschlechtern den Einschluss und senken damit die Fusionsausbeute. Bei ITER würden sie - so die IPP-Rechnungen - genau in den Plasmazuständen auftreten, auf die man bei der Entwicklung eines dauerbetriebsfähigen Tokamak setzt.

Gegenmaßnahmen sind jedoch möglich: Umschlossen von einer unendlich leitfähigen - bzw. supraleitenden - Wand, könnten sich die Instabilitäten gar nicht erst ausbilden. Die Plasmabewegung induziert nämlich elektrische Ströme in der Wand, deren magnetisches Feld der Ursache entgegen wirkt: Das Plasma wird stabilisiert. Eine "normale" Stahlwand kann die Ausbildung der Kink-Instabilitäten immerhin noch abbremsen - von Mikro- auf Millisekunden. Der Prozess wird damit langsam genug, dass ein automatisches Feedback-System eingreifen kann. Schwache elektrische Kontrollströme, die in kleinen, an der Wand befestigten Magnetspulen fließen, können die Beulen und Dellen bereits vor dem Anwachsen "einfangen" und auflösen. Sie simulieren quasi die magnetische Antwort einer supraleitenden Wand auf die Bewegungen des Plasmas.

... mehr zu:
»Brennstoff »ITER »Plasma »Raumdimension »Tokamak

Damit dies technisch funktionieren kann, muss man die Vorgänge präzise beschreiben und berechnen können. Dabei profitieren Rechnungen für Fusionsanlagen vom Typ Tokamak - zu denen ITER gehört - gewöhnlich vom einfachen Aufbau dieser Experimente. Das ringförmige Plasmagefäß, der magnetische Ringkäfig und das darin eingeschlossene ringförmige Plasma haben eine axialsymmetrische Gestalt: Beim Umlaufen um diesen Ring gibt es keine Änderungen. Entsprechend genügt es daher meist, mit nur zwei Raumdimensionen zu rechnen. Will man aber die elektro-magnetischen Wechselwirkungen zwischen dem Plasma und der Gefäßwand beschreiben, ist zu berücksichtigen, dass trotz der allgemeinen Symmetrie die Wand nicht überall gleich ist. An einigen Stellen besitzt sie große Öffnungen, die das Plasma für Heizungen, Pumpen und Messgeräte zugänglich machen. Für das genaue Berechnen der Kink-Instabilitäten und ihre Stabilisierung durch die Wand sind damit alle drei Raumdimensionen wichtig.

Genau dies kann der neu entwickelte IPP-Rechencode "Starwall". Er beschreibt - weltweit einmalig - Plasma und Gefäßwände in allen drei Raumdimensionen. Profitiert haben die Tokamak-Theoretiker dabei von der Zusammenarbeit mit der Stellarator-Theorie: Stabilitätscodes für Fusionsanlagen vom Typ Stellarator - wie der im IPP-Teilinstitut Greifswald entstehende Wendelstein 7-X - sind nämlich immer dreidimensional. Denn Stellaratoren mit ihrem bizarren Spulensystem besitzen die vereinfachende Symmetrie der Tokamaks nicht. Ohne diese Vorarbeit der Stellarator-Theoretiker wäre die Entwicklung viel zu aufwändig gewesen.

Die Rechnungen mit "Starwall" für ITER zeigen: Mit einem Feedback-System könnten die ITER-Entladungen bis zu einem Plasmadruck stabil bleiben, der - je nach Druck- und Stromprofilen im Plasma - um 50 Prozent höher liegt als ohne Stabilisierung: Ein großer Fortschritt. Experimentelle Voruntersuchungen sind an der Garchinger Tokamak-Anlage ASDEX Upgrade geplant: Mit 24 Kontrollspulen und einer Wand nahe am Plasma will man für ITER untersuchen, wie gut sich die Kink-Instabilitäten beeinflussen lassen.

Isabella Milch | idw
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Berichte zu: Brennstoff ITER Plasma Raumdimension Tokamak

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schnell, günstig, tragbar: Testgerät PIDcheck prüft Solarmodule im Feld auf PID
18.06.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Faszination Weltall - Erlanger Forscher züchten Kristalle in der Schwerelosigkeit
15.06.2018 | Fraunhofer IISB

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt

18.06.2018 | Biowissenschaften Chemie

Umwandlung von nicht-neuronalen Zellen in Nervenzellen

18.06.2018 | Biowissenschaften Chemie

Im Fußballfieber: Rittal Cup verspricht Spannung und Spaß

18.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics