Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine neue Generation von Solarzellen

08.12.2006
Die Leibniz Universität Hannover forscht an einer kostengünstigen Alternative zu teuren Silizium-Solarzellen. Die neuen Farbstoffsolarzellen stehen kurz vor der Kommerzialisierung.
Effektive Solarzellen - und trotzdem kostengünstig in der Herstellung: Das Institut für Physikalische Chemie und Elektrochemie der Leibniz Universität Hannover arbeitet intensiv an einer Alternative zu herkömmlichen Silizium-Solarzellen, um die Energieressourcen der Sonne kostengünstiger als bisher nutzen zu können. Die neuen, so genannten Farbstoffsolarzellen, die die Sonnenenergie mit Hilfe eines aufgebrachten Farbstoffs in Strom umwandeln, sind in der Herstellung erheblich günstiger als die bekannten Silizium-Solarzellen. Ziel der Arbeiten ist, durch neue Fertigungskonzepte die Effektivität der Farbstoffsolarzellen zu steigern, um sie konkurrenzfähig zur Silizium-Zelle zu machen.

Zudem hat sich die Forschergruppe zum Ziel gesetzt, flexible Farbstoffsolarzellen zu entwickeln, die zum Beispiel in Kleidung oder Zeltplanen integriert werden können. So könnten künftig unterwegs elektronische Geräte ohne Batterien betrieben werden. Ein attraktiver Nebenaspekt der neuen Solarzellen ist, dass sie in vielen bunten Farben hergestellt werden können, was sie als energiebringendes Accessoire durchaus populär machen könnte. Vier von der Deutschen Forschungsgemeinschaft (DFG) geförderte Projekte zur Entwicklung und Verbesserung von Farbstoffsolarzellen werden momentan unter der Leitung von Dr. Torsten Oekermann bearbeitet.
"Die herkömmlichen Silizium-Solarzellen sind zwar effizient im Gebrauch,
aber auch sehr teuer in der Herstellung, weil die erforderlichen Hoch-Temperaturprozesse von fast 2000 Grad Celsius sehr energieaufwendig sind", erläutert Institutsdirektor Prof. Jürgen Caro. Erste Prototypen der Farbstoffsolarzellen, die aus Titandioxid bestehen, sind schon im Verkauf. Bei ihrer Herstellung ist allerdings immer noch eine Temperatur von mindestens 450 Grad Celsius erforderlich. Die hannoverschen Forscher arbeiten daran, durch elektrochemische Abscheidung von Titandioxid- und Zinkoxidschichten die Produktionstemperatur der Zellen auf Raumtemperatur abzusenken.

Entscheidend für die Herstellung von flexiblen Farbstoffsolarzellen ist die Erzeugung von Halbleiteroxid-Filmen bei möglichst niedrigen Temperaturen, weil sonst die leitenden Plastikunterlagen beschädigt werden. Und hier hält die Leibniz Universität Hannover einen Weltrekord: Die in Zusammenarbeit mit der japanischen Universität Gifu hergestellten porösen Zinkoxid-Filme sind im Wirkungsgrad flexibler Solarzellen bislang konkurrenzlos.

Zur Herstellung der Farbstoffsolarzellen werden die Halbleiteroxide als poröser Film auf eine leitfähige Unterlage aufgebracht. An diese Oxidschicht wird ein Farbstoff angelagert, in dessen Molekülen durch das Sonnenlicht Elektronen angeregt werden. Die angeregten Elektronen werden auf das Halbleiteroxid übertragen und diffundieren zum leitfähigen Rückkontakt. Über den äußeren Stromkreis gelangen die Elektronen zur Gegenelektrode und von dort durch einen Elektrolyten zurück zum Farbstoff. So wird ein Photostrom erzeugt.

Um bei der elektrochemischen Abscheidung die nötige Porosität der Schichten zu erreichen, werden der Abscheidungslösung Additive hinzugefügt, die als "Template" für die Poren dienen. Hier beteiligt sich PD Dr. Michael Wark im gleichen Institut, der über langjährige Erfahrung bei der Anwendung solcher Additive in verschiedenen Herstellungsmethoden verfügt.

Dr. Stefanie Beier | Leibniz Universität Hannover
Weitere Informationen:
http://www.uni-hannover.de
http://www.uni-hannover.de/de/universitaet/veroeffentlichungen/unimagazin/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden
19.01.2018 | Technische Universität München

nachricht Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten
18.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie