Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bausteine für das Terahertz-Imaging

12.10.2006
In den letzten Jahren hat modernste Technik die Nutzung einer kaum beachteten Nische in der elektromagnetischen Strahlung eröffnet: Der Terahertz-Wellen.

Physikalisch zwischen Infrarot und Mikrowellen gelegen, verspricht dieser Bereich zahlreiche faszinierende Anwendungsmöglichkeiten in Forschung, Industrie und täglichem Leben - Bilder aus dem Inneren von Molekülen, neue Erkenntnisse über die Kinderstube des Universums, medizinische Diagnosen oder Sicherheitschecks an Flughäfen ohne lästiges Abtasten der Passagiere.

Die Entwicklung von leistungsfähigen Terahertz-Detektoren wird das zukünftige Forschungsfeld von Dr. Ullrich Pfeiffer am Institut für Höchstfrequenztechnik und Quantenelektronik der Universität Siegen sein. Zu diesem Vorhaben wird er am 13. Oktober in Prag einen der höchstdotierten Forschungspreise Europas, den EURYI-Award (European Young Investigators-Award) empfangen.

Alle Körper strahlen mit ihrer Wärme auch Terahertz-Wellen ab. Das Frequenzband der Terahertz-Wellen liegt an der Grenze zwischen Funkwellen und Licht in der Frequenzregion von 100 Gigahertz bis 10 Terahertz. Sie durchdringen viele Materialien, etwa Kunststoffe und Holz, aber auch biologisches Gewebe, von Wasser und vielen Metallen werden sie jedoch absorbiert. Allerdings sind die Terahertz-Signale normalerweise äußerst schwach und können nur mit aufwendigen Apparaturen registriert werden. Deshalb bezeichneten Forscher diesen Bereich des "fernen Infrarot" lange auch als "Terahertz-Lücke".

In den letzten Jahren aber wurden erste Terahertz-Kameras entwickelt. Bis heute benötigen sie noch Belichtungszeiten von mehreren Minuten und besitzen nur eine Auflösung von wenigen Pixel. Für die Technik sind Terahertz-Bilder interessant, weil sie in vielen Fällen durch Oberflächen hindurch blicken und weil die Strahlung nicht-ionisierend ist, also für biologische Gewebe ungefährlich. Die Terahertz-Technik verspricht daher ein breites Feld von möglichen Anwendungen, beispielsweise auch für die Nachrichtenübertragung

Ziel des 35-jährigen Physikers Ullrich Pfeiffer ist es, Terahertz-Detektoren aus neuen Materialien zu entwickeln, die empfindlich genug sind, um sogar bewegte Videobilder aufzunehmen. Sie sollen in kleinen Kameras zum Einsatz kommen und preiswert genug für eine breite Anwendung bleiben. Zudem will er die Fähigkeiten der Terahertz-Kameras immer mehr in Regionen höherer Frequenzen verschieben, denn bisher arbeiten sie vor allem in Bereichen von mehreren hundert Gigahertz.

Aktuellste Einsatzmöglichkeit von Terahertz-Kameras sind wohl die Sicherheitskontrollen an Flughäfen: Terahertzwellen blicken durch Kofferwände und Kleidung hindurch und erkennen verborgene Waffen und Sprengstoffe. In der Medizin erhoffen sich die Forscher, durch ungefährliche Terahertzwellen zahlreiche Röntgenuntersuchungen zu ersetzen. In der Industrie eröffnen kompakte und schnelle Terahertz-Kameras Perspektiven für eine zerstörungsfreie Qualitätsprüfungen am Fließband, da sie auch in viele Werkstoffe hinein blicken können.

Mit dem Preisgeld von 1,1 Millionen Euro will Pfeiffer am Institut für Höchstfrequenztechnik und Quanten-Elektronik der Universität Siegen in den nächsten fünf Jahren eine Forschungsgruppe aufbauen, die sich vor allem mit der Entwicklung hochintegrierter Terahertz-Detektoren beschäftigt. "Mit Hilfe dieser Auszeichnung können wir es schaffen! Wenn wir die Brücke zwichen herkömlichen Silizium-Chips und der Terahertz-Elektronik ersteinmal geschlagen haben warten auf uns ganz neue und faszinierende Anwendungen. Angesichts der notwendigen Investitionen für neue Materialien, Schaltungen und Systeme wäre dies ohne finanzielle Starthilfe gar nicht möglich." Die neue Arbeitsgruppe wird das Team von Prof. Peter Haring Bolivar im Zentrum für Sensorsysteme an der Universität Siegen ergänzen.

Dr. Ullrich Pfeiffer, Jahrgang 1970, hat sich früh auf Hochfrequenz-Schaltkreise und -Systeme spezialisiert. Er promovierte an der Universität Heidelberg mit der Entwicklung von Elektronik-Bausteinen, die heute am Europäischen Kernforschungszentrum CERN in Genf genutzt werden. 2001 ging er an das T.J. Watson Forschungszentrum des Computerkonzerns IBM bei New York, wo er bis Ende 2006 tätig bleibt. Hier erhielt er mehrere wissenschaftliche Auszeichnungen, darunter auch für seine Entwicklungen von Millimeterwellen-Schaltkreise, die eine wichtige Basis für künftige hochintegrierte Terahertz-Detektoren sind.

Ullrich-Eberhardt Georgi | idw
Weitere Informationen:
http://www.uni-siegen.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise