Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MIT material puts new spin on electronics

26.05.2006


Researchers at MIT’s Francis Bitter Magnet Lab have developed a novel magnetic semiconductor that may greatly increase the computing power and flexibility of future electronic devices while dramatically reducing their power consumption.

... mehr zu:
»Lab »Magnet »Moodera

The work was reported in the April issue of Nature Materials.

The new material is a significant step forward in the field of spin-based electronics - or "spintronics" - where the spin state of electrons is exploited to carry, manipulate and store information. Conventional electronic circuits use only the charge state (current on or off) of an electron, but these tiny particles also have a spin direction (up or down).


Devices such as laptops and iPods already employ spintronics to store information in their super-high-capacity magnetic hard drives, but using electron spin states to process information through circuits would be a dramatic advance in computing. "We can carry information in two ways at once, and this will allow us to further reduce the size of electronic circuits," says Jagadeesh Moodera, a senior research scientist at the Magnet Lab and leader of the research team. Today’s circuits carry information by varying the on/off state of current passed through electrons. Those same electrons could carry additional information through their spin orientation.

The magnetic semiconductor material created by Moodera’s team is indium oxide with a small amount of chromium added. It sits on top of a conventional silicon semiconductor, where it injects electrons of a given spin orientation into the semiconductor. The spin-polarized electrons then travel through the semiconductor and are read by a spin detector at the other end of the circuit.

Although the new material is promising in itself, Moodera says the real breakthrough is their demonstration that the material’s magnetic behavior depends on defects, or missing atoms (vacancies), in a periodic arrangement of atoms. This cause-and-effect relationship was uncertain before, but Moodera’s team was able to tune the material’s magnetic behavior over a wide range by controlling defects at the atomic level.

"This is what has been missing all along," he says. "The beauty of it is that our work not only shows this magnetic semiconductor is real, but also technologically very useful."

The new material’s ability to inject spin at room temperature and its compatibility with silicon make it particularly useful. Its optical transparency means it also could find applications in solar cells and touch panel circuitry, according to Moodera.

In addition to reducing circuit size, spintronics could create more versatile devices because electron spins can be changed reversibly (from up to down and vice versa) along circuits using an electrode gate. "We currently have multifunctional cellphones, for example, that act as phones, cameras and music players," says Moodera. "Spintronics could create even greater multifunctionality in the future."

Spintronics may also reduce the power consumption of information devices. Spin states are considered "nonvolatile," meaning they retain stored information even when the power is switched off - this is why magnetic hard drives hold information without power. Spin electronics could create circuits that operate similarly, storing and passing information without the need for a continuous current to retain the data. "In such a system, we can transmit spin information without moving charges," says Moodera. "It’s like creating a ripple in a pond - it travels all the way across without adding more energy."

Among those assisting in the research are postdoctoral associate John Philip of the Magnet Lab and Tiffany Santos, a graduate student in the Department of Materials Science and Engineering. The research is a collaborative effort among MIT, Boise State University (Idaho) and the Korea Institute of Science and Technology (KIST), supported by the KIST-MIT project, the National Science Foundation and the Office of Naval Research. The work originally began under the Cambridge-MIT Institute.

Elizabeth A. Thomson | MIT News Office
Weitere Informationen:
http://www.mit.edu

Weitere Berichte zu: Lab Magnet Moodera

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Seilzugsensor MH60 – erfolgreicher Einsatz in rauer Umgebung
20.04.2018 | WayCon Positionsmesstechnik GmbH

nachricht Treiber für Digitalisierung von Industrieanlagen: ABB, HPE und Rittal stellen Secure Edge Data Center vor
20.04.2018 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics