Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochleistungslaser für ultraviolettes Licht

19.09.2001


Kürzlich gelang es einem internationalen Wissenschaftlerteam beim Forschungszentrum DESY, die maximale Lichtverstärkung an einem "Freie-Elektronen-Laser" (FEL) für ultraviolette Strahlung zu erreichen. Der Elektronenlaser erreicht eine Lichtverstärkung von 10 Millionen - das entspricht der theoretisch erwarteten Höchstleistung für eine solche Anlage und einem neuen Weltrekord: Gegenüber den besten bisherigen Lichtquellen, die im Bereich der extrem harten ultravioletten Strahlung für die Forschung zur Verfügung stehen, hat der neue Laser eine tausendfach höhere Spitzenleuchtstärke.


Der Freie-Elektronen-Laser bei DESY erzeugt ultraviolettes Laserlicht mit Wellenlängen zwischen 80 und 180 Nanometern (Millionstel Millimetern), das sind die kürzesten Wellenlängen, die je ein FEL erzeugt hat. Die maximale Lichtverstärkung ("Sättigung") gelang bei einer Wellenlänge von 98 Nanometern. Der Forschung wird damit eine neue, extrem leistungsfähige Lichtquelle zur Verfügung gestellt. Außerdem ist dieser Nachweis ein entscheidender Meilenstein auf dem Weg zu einem Röntgenlaser, der derzeitig im Rahmen des TESLA-Projekts in internationaler Zusammenarbeit beim Forschungszentrum DESY in Hamburg entwickelt und geplant wird.

Die spektakulären Ergebnisse wurden mit einem Freie-Elektronen-Laser erzielt, der zurzeit an einer Testanlage für TESLA bei DESY betrieben wird. Dabei wird das intensive Laserlicht nach einem neuartigen Prinzip erzeugt: Elektronen werden in einem supraleitenden Teilchenbeschleuniger auf hohe Energien gebracht, fliegen anschließend im Slalomkurs durch eine besondere Magnetanordnung und senden dabei laserartig gebündelte Strahlung aus. Der Verstärkertrick: Die Elektronen und die Strahlungsblitze beeinflussen einander auf ihrem Weg durch die 15 m lange Magnetstruktur - und zwar so, dass die zu winzigen Päckchen gebündelten Elektronen immer dichter zusammengedrängt werden und immer intensiver strahlen - ein sich selbst verstärkender Effekt. Er wiederholt sich so oft, bis sämtliche Elektronen im Gleichtakt schwingen. Das von ihnen ausgesandte Licht überlagert sich zu extrem intensiven Laserblitzen. Dies ist das SASE-Prinzip - "Self-Amplified Spontaneous Emission", die selbstverstärkte spontane Emission. Das Besondere am SASE-Prinzip ist, dass es im Gegensatz zu herkömmlichen Lasern nicht auf bestimmte Wellenlängen beschränkt ist. Die Beschleunigung der Elektronen muss nur entsprechend der gewünschten Wellenlänge eingestellt werden. An dem Freie-Elektronen-Laser bei DESY hat sich nun erstmalig gezeigt, dass dieser selbstverstärkende Effekt auch tatsächlich zu der theoretisch berechneten millionenfachen Lichtverstärkung im Ultravioletten führt. Dass das Prinzip für sichtbares Licht mit ähnlich hohen Verstärkungsfaktoren funktioniert, hatten Institute in den USA bereits im letzen Jahr gezeigt. Bei DESY haben jetzt die ersten Wissenschaftlergruppen damit begonnen, die konkurrenzlose Lichtquelle für ihre Forschung zu verwenden. Dazu DESY-Forschungsdirektor Prof. Jochen Schneider: "Verglichen mit den besten Synchrotronstrahlungsquellen, an denen wir heute unsere Forschungsarbeiten durchführen, ist unser Freie-Elektronen-Laser millionenfach besser".


In etwa einem Jahr wird die derzeitige Testanlage zu einem 300 Meter langen Freie-Elektronen-Laser für Wellenlängen bis hinunter zu sechs Nanometern ausgebaut, dem Bereich der "weichen" Röntgenstrahlung. Diese einzigartige Lichtquelle wird dann Wissenschaftlern aus aller Welt für ihre Experimente zur Verfügung stehen. Gleichzeitig dient sie als Pilotanlage für das Zukunftsprojekt TESLA, bei dem die neuartige SASE-Technologie zur Erzeugung noch kleinerer Wellenlängen genutzt werden soll.

TESLA steht für TeV-Energy Superconducting Linear Accelerator, also supraleitender linearer Beschleuniger für Tera-Elektronenvolt-Energien. Dahinter verbirgt sich ein 33 Kilometer langer, in internationaler Zusammenarbeit entwickelter Linearbeschleuniger, in dem Elektronen auf ihre Antiteilchen, die Positronen, stoßen sollen. Das Besondere an der neuen Anlage: Ein Beschleuniger ermöglicht Teilchenkollisionen mit höchster Energie und dient gleichzeitig als Quelle für intensive und extrem kurze Röntgenblitze mit Lasereigenschaften. Die TESLA-Röntgenlaser eröffnen neue Forschungsperspektiven für ganz verschiedene Fachgebiete - von der Physik über die Chemie, Biologie und Materialforschung bis hin zur Medizin. Mit einer Entscheidung über das TESLA-Projekt wird ab Sommer 2002 gerechnet. TESLA soll als internationales Zentrum gegründet und betrieben werden. Nach seiner Genehmigung und dem Ablauf des Planfeststellungsverfahrens könnte TESLA nach etwa achtjähriger Bauzeit den Betrieb Anfang des nächsten Jahrzehnts aufnehmen.


Petra Folkerts | idw
Weitere Informationen:
http://www.desy.de/presse

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Neue Sensortechnik für E-Auto-Batterien
08.12.2016 | Ruhr-Universität Bochum

nachricht Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten
08.12.2016 | Institut für Solarenergieforschung GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie