Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochleistungslaser für ultraviolettes Licht

19.09.2001


Kürzlich gelang es einem internationalen Wissenschaftlerteam beim Forschungszentrum DESY, die maximale Lichtverstärkung an einem "Freie-Elektronen-Laser" (FEL) für ultraviolette Strahlung zu erreichen. Der Elektronenlaser erreicht eine Lichtverstärkung von 10 Millionen - das entspricht der theoretisch erwarteten Höchstleistung für eine solche Anlage und einem neuen Weltrekord: Gegenüber den besten bisherigen Lichtquellen, die im Bereich der extrem harten ultravioletten Strahlung für die Forschung zur Verfügung stehen, hat der neue Laser eine tausendfach höhere Spitzenleuchtstärke.


Der Freie-Elektronen-Laser bei DESY erzeugt ultraviolettes Laserlicht mit Wellenlängen zwischen 80 und 180 Nanometern (Millionstel Millimetern), das sind die kürzesten Wellenlängen, die je ein FEL erzeugt hat. Die maximale Lichtverstärkung ("Sättigung") gelang bei einer Wellenlänge von 98 Nanometern. Der Forschung wird damit eine neue, extrem leistungsfähige Lichtquelle zur Verfügung gestellt. Außerdem ist dieser Nachweis ein entscheidender Meilenstein auf dem Weg zu einem Röntgenlaser, der derzeitig im Rahmen des TESLA-Projekts in internationaler Zusammenarbeit beim Forschungszentrum DESY in Hamburg entwickelt und geplant wird.

Die spektakulären Ergebnisse wurden mit einem Freie-Elektronen-Laser erzielt, der zurzeit an einer Testanlage für TESLA bei DESY betrieben wird. Dabei wird das intensive Laserlicht nach einem neuartigen Prinzip erzeugt: Elektronen werden in einem supraleitenden Teilchenbeschleuniger auf hohe Energien gebracht, fliegen anschließend im Slalomkurs durch eine besondere Magnetanordnung und senden dabei laserartig gebündelte Strahlung aus. Der Verstärkertrick: Die Elektronen und die Strahlungsblitze beeinflussen einander auf ihrem Weg durch die 15 m lange Magnetstruktur - und zwar so, dass die zu winzigen Päckchen gebündelten Elektronen immer dichter zusammengedrängt werden und immer intensiver strahlen - ein sich selbst verstärkender Effekt. Er wiederholt sich so oft, bis sämtliche Elektronen im Gleichtakt schwingen. Das von ihnen ausgesandte Licht überlagert sich zu extrem intensiven Laserblitzen. Dies ist das SASE-Prinzip - "Self-Amplified Spontaneous Emission", die selbstverstärkte spontane Emission. Das Besondere am SASE-Prinzip ist, dass es im Gegensatz zu herkömmlichen Lasern nicht auf bestimmte Wellenlängen beschränkt ist. Die Beschleunigung der Elektronen muss nur entsprechend der gewünschten Wellenlänge eingestellt werden. An dem Freie-Elektronen-Laser bei DESY hat sich nun erstmalig gezeigt, dass dieser selbstverstärkende Effekt auch tatsächlich zu der theoretisch berechneten millionenfachen Lichtverstärkung im Ultravioletten führt. Dass das Prinzip für sichtbares Licht mit ähnlich hohen Verstärkungsfaktoren funktioniert, hatten Institute in den USA bereits im letzen Jahr gezeigt. Bei DESY haben jetzt die ersten Wissenschaftlergruppen damit begonnen, die konkurrenzlose Lichtquelle für ihre Forschung zu verwenden. Dazu DESY-Forschungsdirektor Prof. Jochen Schneider: "Verglichen mit den besten Synchrotronstrahlungsquellen, an denen wir heute unsere Forschungsarbeiten durchführen, ist unser Freie-Elektronen-Laser millionenfach besser".


In etwa einem Jahr wird die derzeitige Testanlage zu einem 300 Meter langen Freie-Elektronen-Laser für Wellenlängen bis hinunter zu sechs Nanometern ausgebaut, dem Bereich der "weichen" Röntgenstrahlung. Diese einzigartige Lichtquelle wird dann Wissenschaftlern aus aller Welt für ihre Experimente zur Verfügung stehen. Gleichzeitig dient sie als Pilotanlage für das Zukunftsprojekt TESLA, bei dem die neuartige SASE-Technologie zur Erzeugung noch kleinerer Wellenlängen genutzt werden soll.

TESLA steht für TeV-Energy Superconducting Linear Accelerator, also supraleitender linearer Beschleuniger für Tera-Elektronenvolt-Energien. Dahinter verbirgt sich ein 33 Kilometer langer, in internationaler Zusammenarbeit entwickelter Linearbeschleuniger, in dem Elektronen auf ihre Antiteilchen, die Positronen, stoßen sollen. Das Besondere an der neuen Anlage: Ein Beschleuniger ermöglicht Teilchenkollisionen mit höchster Energie und dient gleichzeitig als Quelle für intensive und extrem kurze Röntgenblitze mit Lasereigenschaften. Die TESLA-Röntgenlaser eröffnen neue Forschungsperspektiven für ganz verschiedene Fachgebiete - von der Physik über die Chemie, Biologie und Materialforschung bis hin zur Medizin. Mit einer Entscheidung über das TESLA-Projekt wird ab Sommer 2002 gerechnet. TESLA soll als internationales Zentrum gegründet und betrieben werden. Nach seiner Genehmigung und dem Ablauf des Planfeststellungsverfahrens könnte TESLA nach etwa achtjähriger Bauzeit den Betrieb Anfang des nächsten Jahrzehnts aufnehmen.


Petra Folkerts | idw
Weitere Informationen:
http://www.desy.de/presse

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ein leistungsfähiges Lasersystem für anspruchsvolle Experimente in der Attosekunden-Forschung
19.07.2017 | Forschungsverbund Berlin e.V.

nachricht Solarenergie unterstützt Industrieprozesse
17.07.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Pharmakologie - Im Strom der Bläschen

21.07.2017 | Biowissenschaften Chemie

Verbesserung des mobilen Internetzugangs der Zukunft

21.07.2017 | Informationstechnologie

Blutstammzellen reagieren selbst auf schwere Infektionen

21.07.2017 | Biowissenschaften Chemie