Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochleistungslaser für ultraviolettes Licht

19.09.2001


Kürzlich gelang es einem internationalen Wissenschaftlerteam beim Forschungszentrum DESY, die maximale Lichtverstärkung an einem "Freie-Elektronen-Laser" (FEL) für ultraviolette Strahlung zu erreichen. Der Elektronenlaser erreicht eine Lichtverstärkung von 10 Millionen - das entspricht der theoretisch erwarteten Höchstleistung für eine solche Anlage und einem neuen Weltrekord: Gegenüber den besten bisherigen Lichtquellen, die im Bereich der extrem harten ultravioletten Strahlung für die Forschung zur Verfügung stehen, hat der neue Laser eine tausendfach höhere Spitzenleuchtstärke.


Der Freie-Elektronen-Laser bei DESY erzeugt ultraviolettes Laserlicht mit Wellenlängen zwischen 80 und 180 Nanometern (Millionstel Millimetern), das sind die kürzesten Wellenlängen, die je ein FEL erzeugt hat. Die maximale Lichtverstärkung ("Sättigung") gelang bei einer Wellenlänge von 98 Nanometern. Der Forschung wird damit eine neue, extrem leistungsfähige Lichtquelle zur Verfügung gestellt. Außerdem ist dieser Nachweis ein entscheidender Meilenstein auf dem Weg zu einem Röntgenlaser, der derzeitig im Rahmen des TESLA-Projekts in internationaler Zusammenarbeit beim Forschungszentrum DESY in Hamburg entwickelt und geplant wird.

Die spektakulären Ergebnisse wurden mit einem Freie-Elektronen-Laser erzielt, der zurzeit an einer Testanlage für TESLA bei DESY betrieben wird. Dabei wird das intensive Laserlicht nach einem neuartigen Prinzip erzeugt: Elektronen werden in einem supraleitenden Teilchenbeschleuniger auf hohe Energien gebracht, fliegen anschließend im Slalomkurs durch eine besondere Magnetanordnung und senden dabei laserartig gebündelte Strahlung aus. Der Verstärkertrick: Die Elektronen und die Strahlungsblitze beeinflussen einander auf ihrem Weg durch die 15 m lange Magnetstruktur - und zwar so, dass die zu winzigen Päckchen gebündelten Elektronen immer dichter zusammengedrängt werden und immer intensiver strahlen - ein sich selbst verstärkender Effekt. Er wiederholt sich so oft, bis sämtliche Elektronen im Gleichtakt schwingen. Das von ihnen ausgesandte Licht überlagert sich zu extrem intensiven Laserblitzen. Dies ist das SASE-Prinzip - "Self-Amplified Spontaneous Emission", die selbstverstärkte spontane Emission. Das Besondere am SASE-Prinzip ist, dass es im Gegensatz zu herkömmlichen Lasern nicht auf bestimmte Wellenlängen beschränkt ist. Die Beschleunigung der Elektronen muss nur entsprechend der gewünschten Wellenlänge eingestellt werden. An dem Freie-Elektronen-Laser bei DESY hat sich nun erstmalig gezeigt, dass dieser selbstverstärkende Effekt auch tatsächlich zu der theoretisch berechneten millionenfachen Lichtverstärkung im Ultravioletten führt. Dass das Prinzip für sichtbares Licht mit ähnlich hohen Verstärkungsfaktoren funktioniert, hatten Institute in den USA bereits im letzen Jahr gezeigt. Bei DESY haben jetzt die ersten Wissenschaftlergruppen damit begonnen, die konkurrenzlose Lichtquelle für ihre Forschung zu verwenden. Dazu DESY-Forschungsdirektor Prof. Jochen Schneider: "Verglichen mit den besten Synchrotronstrahlungsquellen, an denen wir heute unsere Forschungsarbeiten durchführen, ist unser Freie-Elektronen-Laser millionenfach besser".


In etwa einem Jahr wird die derzeitige Testanlage zu einem 300 Meter langen Freie-Elektronen-Laser für Wellenlängen bis hinunter zu sechs Nanometern ausgebaut, dem Bereich der "weichen" Röntgenstrahlung. Diese einzigartige Lichtquelle wird dann Wissenschaftlern aus aller Welt für ihre Experimente zur Verfügung stehen. Gleichzeitig dient sie als Pilotanlage für das Zukunftsprojekt TESLA, bei dem die neuartige SASE-Technologie zur Erzeugung noch kleinerer Wellenlängen genutzt werden soll.

TESLA steht für TeV-Energy Superconducting Linear Accelerator, also supraleitender linearer Beschleuniger für Tera-Elektronenvolt-Energien. Dahinter verbirgt sich ein 33 Kilometer langer, in internationaler Zusammenarbeit entwickelter Linearbeschleuniger, in dem Elektronen auf ihre Antiteilchen, die Positronen, stoßen sollen. Das Besondere an der neuen Anlage: Ein Beschleuniger ermöglicht Teilchenkollisionen mit höchster Energie und dient gleichzeitig als Quelle für intensive und extrem kurze Röntgenblitze mit Lasereigenschaften. Die TESLA-Röntgenlaser eröffnen neue Forschungsperspektiven für ganz verschiedene Fachgebiete - von der Physik über die Chemie, Biologie und Materialforschung bis hin zur Medizin. Mit einer Entscheidung über das TESLA-Projekt wird ab Sommer 2002 gerechnet. TESLA soll als internationales Zentrum gegründet und betrieben werden. Nach seiner Genehmigung und dem Ablauf des Planfeststellungsverfahrens könnte TESLA nach etwa achtjähriger Bauzeit den Betrieb Anfang des nächsten Jahrzehnts aufnehmen.


Petra Folkerts | idw
Weitere Informationen:
http://www.desy.de/presse

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Vom Rollstuhl auf das Liegerad – Mit Funktioneller Elektrostimulation zum Cybathlon
30.09.2016 | Technische Universität Berlin

nachricht 3D-Food Printing an der Hochschule Rhein-Waal
29.09.2016 | Hochschule Rhein-Waal

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: Zielsichere Roboter im Mikromaßstab

Dank einer halbseitigen Beschichtung mit Kohlenstoff lassen sich Mikroschwimmer durch Licht antreiben und steuern

Manche Bakterien zieht es zum Licht, andere in die Dunkelheit. Den einen ermöglicht dieses phototaktische Verhalten, die Sonnenenergie möglichst effizient für...

Im Focus: Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

LMU-Physiker haben mit Nanopartikeln und Laserlicht Protonenstrahlung produziert. Sie könnte künftig neue Wege in der Strahlungsmedizin eröffnen und bei der Tumorbekämpfung helfen.

Stark gebündeltes Licht entwickelt eine enorme Kraft. Ein Team um Professor Jörg Schreiber vom Lehrstuhl für Experimentalphysik - Medizinische Physik der LMU...

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart Glasses Experience Day

30.09.2016 | Veranstaltungen

Einzug von Industrie 4.0 und Digitalisierung im Südwesten - Innovationstag der SmartFactoryKL

30.09.2016 | Veranstaltungen

"Physics of Cancer" - Forscher diskutieren über biomechanische Eigenschaften von Krebszellen

30.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Smart Glasses Experience Day

30.09.2016 | Veranstaltungsnachrichten

Materialkompetenz für den Leichtbau: Fraunhofer IMWS präsentiert neue Lösungen auf der K-Messe

30.09.2016 | Messenachrichten

Vom Rollstuhl auf das Liegerad – Mit Funktioneller Elektrostimulation zum Cybathlon

30.09.2016 | Energie und Elektrotechnik