Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mini-Brennstoffzelle – große Leistung

28.09.2005


Mobile Geräte wie Handys, Laptops oder Kameras brauchen Strom – egal, wo und wie lange. Mini-Brennstoffzellen verbessern die Energieversorgung. Dr.-Ing. Robert Hahn vom Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM hat ein Mikrobrennstoffzellensystem entwickelt, das nur wenige Kubikzentimeter groß ist und eine deutlich höhere Energiedichte als Batterien besitzt. Diese Arbeiten werden mit dem f-cell award 2005 in Bronze ausgezeichnet. Der Preis ist gestiftet von der DaimlerCrysler AG und dem Land Baden-Württemberg.


Die Brennstoffzellentechnologie gilt als eine der Schlüsseltechnologien des 21. Jahrhunderts. Denn Brennstoffzellen erzeugen nahezu verlustfrei aus chemischer Energie Strom und Wärme. Die Eigenschaften sind überragend – effizient, sauber, modular erweiterbar. Brennstoffzellen gibt es für stationäre Kraftwerke und für den mobilen Einsatz. Mikrobrennstoffzellen zielen auf den Markt der Handys und Kleingeräte. Weltweit wird an ihrer Entwicklung gearbeitet. Sie sollen Batterien ersetzen und die Energieversorgung portabler Elektronikgeräte und autonomer Mikrosysteme sicherstellen, etwa für drahtlos vernetzte Sensoren wie die eGrains, am Körper tragbare »wearable« Elektronik oder medizintechnische Mikrosysteme. »Mit Mikrobrennstoffzellen ist eine Erhöhung der Energiedichte und damit der Betriebszeit um den Faktor 5 bis 10 erreichbar«, erklärt Dr.-Ing. Robert Hahn, Gruppenleiter am IZM. Er koordinierte die Entwicklung der Mikrobrennstoffzelle.

Die am IZM entwickelte Technologie basiert auf Waferlevel- und Folientechnologien und ist durch mehrere Patentanmeldungen geschützt. Obwohl Silizium-Wafer als Trägersubstrate während der Herstellung eingesetzt werden, besteht die Mikrobrennstoffzelle aus Polymer- und Metallfolien. Mit den industriell erprobten Verfahren lassen sich Wege zur kostengünstigen Herstellung erschließen, etwa Rolle-zu-Rolle-Verfahren. »Die von uns entwickelte planare Mikrobrennstoffzelle ist aus drei Komponenten aufgebaut«, erklärt Dr. Hahn. »Ein mikrostrukturiertes Flowfield, das ist sozusagen die untere Folie auf der Anodenseite, dient dazu, den Brennstoff heranzuführen und zu verteilen. Gleichzeitig leitet sie den Strom ab. Eine perforierte und ebenfalls mikrostrukturierte Stromableiterfolie regelt den Gasaustausch auf der Kathodenseite sowie dort die Stromableitung.« Zwischen die beiden Folien wird eine kommerzielle Membran-Elektroden-Einheit eingesetzt. Sie ist in isolierte Bereiche unterteilt, für nebeneinander liegende Zellen. Durch die Mikrostrukturierung der Stromableiter kann auf weitere Gasdiffusionsschichten verzichtet werden. Die Abdichtung und Kontaktierung erfolgt mit Siebdruck- und Dispensiertechniken.


Demonstratoren der planaren, luftatmenden PEM-Brennstoffzelle sind etwa einen Quadratzentimeter groß und liefern im Dauerbetrieb mit Wasserstoff stabil eine Leistungsdichte von 80 mW/cm2, bei guten Bedingungen sogar 160 mW/cm2. Dabei sind drei Einzelzellen in Serie geschaltet, um eine Gesamtspannung von 1.5 V zu erzeugen. Das reicht aus, um beispielsweise Knopfzellen zu ersetzen. Durch die verwendeten Folientechnologien lassen sich die Zellen leicht in die Oberfläche elektronischer Geräte integrieren.

Das IZM verfolgt zwei Wege, um Brennstoff bereitzustellen: Zum einen werden anorganische Materialien wie Zink und Kaliumhydroxid – die auch in jeder normalen Alkalinbatterie vorhanden sind – in einer Gasentwicklungszelle zu Wasserstoff umgesetzt. Derzeit arbeiten die Fraunhofer-Forscher mit einer solchen Knopfzelle der Varta Microbattery GmbH, die für die Kombination mit der Mikrobrennstoffzelle optimiert wird. Das vier Kubikzentimeter große Gesamtsystem liefert eine Energie von 2.1 Wattstunden und damit die 2,3-fache Energie einer gleich großen AAA-Alkalinbatterie und die knapp zweifache Energie von Li-Polymerakkus. Das gelingt, weil der Wasserstoff ohne komplizierte Regelung erzeugt werden kann – er entsteht direkt proportional zum Laststrom. »Ein Handy benötigt unterschiedlich viel Energie, je nachdem ob ich telefoniere oder damit fotografiere. Bei unserem System steigt die Wasserstoffproduktion je nach dem Bedarf«, erklärt Dr. Hahn.

Zum anderen werden Methanol- und Ethanol-Brennstoffzellen (DMFC, DEFC) eingesetzt. Mit ihnen lassen sich wesentlich höhere Energiedichten und damit Nutzungszeiten der elektronischen Geräte erzielen. Hier gibt es jedoch noch großen Entwicklungsbedarf. Das IZM ist an mehreren Projekten beteiligt, in denen daran gearbeitet wird, die Mikrotechnologien auf Systeme mit Flüssigbrennstoff zu übertragen.

Für die Arbeiten rund um die Mikrobrennstoffzelle erhält Dr.-Ing. Robert Hahn den f-cell award 2005 in Bronze. Der Preis wird am 26. September im Neuen Schloss in Stuttgart verliehen. Die Preisvergabe ist Teil des internationalen f-cell Forums vom 26. bis 28. September. Dort berichten mehr als 60 Referenten aus Wissenschaft und Wirtschaft über die neuesten Entwicklungen im Bereich der stationären, mobilen und portablen Nutzung der Brennstoffzelle.

Dr. Robert Hahn | IZM
Weitere Informationen:
http://www.izm.fraunhofer.de

Weitere Berichte zu: Brennstoffzelle IZM Mikrobrennstoffzelle Wasserstoff

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden
19.01.2018 | Technische Universität München

nachricht Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten
18.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie