Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Preiswerten Terahertzwellen-Quellen einen Schritt näher

04.08.2005


Wissenschaftlern der FernUniversität in Hagen ist es gelungen, Phänomene der Terahertzwellen-Technologie zu erklären, die US-Wissenschaftlern vor einiger Zeit aufgefallen waren. Durch die Arbeit von Dr. Qing Cao und Univ.-Prof. Dr. Jürgen Jahns, Lehrgebiet Optische Nachrichtentechnik im Fachbereich Elektrotechnik und Informationstechnik, ist die Realisierung preiswerter Antennen zur Erzeugung von Terahertzwellen mit simplem Stahldraht einen Schritt näher gekommen - und damit auch der Einsatz in verschiedensten praktischen Bereichen von der Medizin über die Materialprüfung bis zur Sicherheitstechnik.



Terahertzwellen gehören nicht zu den Wellenbereichen, mit denen sich das Lehrgebiet Optische Nachrichtentechnik (ONT) der FernUniversität besonders intensiv befaßt. Dennoch wollten sich Univ.-Prof. Dr. Jürgen Jahns und sein Mitarbeiter Dr. Qing Cao nicht die Chance entgehen lassen, den Kollegen zu helfen, die sich mit diesen Wellen befassen, die seit einigen Jahren großes Interesse erregen. Die beiden Hagener Wissenschaftler im Fachbereich Elektrotechnik und Informationstechnik konnten einige Phänomene erklären, die renommierten Kollegen in den USA vor einigen Monaten auffielen. Dieser Beitrag kann die Entwicklung kostengünstiger Quellen für Terahertzstrahlen entscheidend voranbringen.

... mehr zu:
»Terahertzwelle »Welle


Terahertzwellen schwingen 0,1- bis 10billiardenmal pro Sekunde, sie sind mit Wellenlängen um einen Mikrometer zwischen UV-, visuellem und Infrarotlicht auf der einen und Mikrowellen und UKW-Bereich auf der anderen Seite angeordnet. Wie diese können sie Materialien zerstörungsfrei durchdringen. Wie Licht lassen sie sich mit Linsen bündeln und mit Spiegeln ablenken.

Iim Sicherheitsbereich arbeiten Unternehmen bereits an neuen Technologien, um z. B. Menschen oder Gepäck durchsuchen zu können, etwa nach Sprengstoff. In der Medizin könnte man innere Strukturen von Lebewesen, indem ein Detektor in den Organismus eingeschleust wird. Insgesamt gibt es einige Parallelen zum Röntgen, vemrutlich aber mit viel weniger schädlichen Folgen. Die hierfür erforderlichen Mini-Terahertz-Quellen sind bereits auf einem Erfolg versprechenden Entwicklungsweg, jedoch sind sie noch sehr teuer. Das können zum einen Antennen sein, die Strahlung frei durch den Raum schicken, oder Leiter wie z. B. Metallkabel oder Glasfasern.

Leiter als Quellen zu verwenden war lange Zeit ein Problem. Einer amerikanischen Forschergruppe gelang es, Terahertzwellen über einen simplen, billigen Stahldraht zu erzeugen. Allerdings konnten die US-Amerikaner einige Beobachtungen nicht oder nicht richtig erklären, wie sie in einem Fachartikel in der "Nature" berichteten.

Die FernUni-Forscher konnten das. Dr. Cao hatte sich früher mit Oberflächenplasmonen befasst und konnte jetzt eine Theorie ausarbeiten, die alle Phänomene der US-Kollegen gut erklärt. Danach befindet sich eine azimutale (wendelkreisförmige) Polarisation der Wellen um den Draht herum. Bei niedrigen Frequenzen befindet sich das elektrische Feld im Metall. Bei sehr hohen Frequenzen entsteht durch den Skin-Effekt ein Oberflächenplasmon: Das elektrische Feld rückt aus der Oberfläche des Metall heraus und verbleibt genau auf ihr. Die pulsierenden Elektronen erzeugen eine elektromagnetische "Wolke", die den Draht umgibt - praktisch die gesamte Energie ist nicht im Draht ist, sondern außerhalb.

Die Luft absorbiert die emeritierte Strahlung wegen ihrer großen Wellenlänge kaum, das ermöglicht eine große Ausbreitung. Bei Draht mit einem Durchmesser von 0,9 Millimetern, so ergaben die Berechnungen, breitet sich das Feld 20 Millimeter in jede Richtung weit aus. Und: Auf Grund der auch dem Licht ähnlichen Eigenschaften kann man Terahertzwellen gebündelt und gezielt in bestimmte Richtungen lenken.

Verwendet man zwei parallele Drähte, von denen einer die Welle führt, springt diese auf den zweiten Draht über. Dies kann man in der Medizin für endoskopische Untersuchungen, in der Sicherheitstechnik oder in der Materialprüfung (z. B. zur Schweißnahtprüfung) nutzen.

Prof. Jahns vermutet, dass in zehn bis 20 Jahren die Technologie praxisreif sein wird. Ohne die Arbeit von Dr. Cao und Jahns dürfte es vielleicht sehr viel länger dauern.

Susanne Bossemeyer | idw
Weitere Informationen:
http://www.fernuni-hagen.de/

Weitere Berichte zu: Terahertzwelle Welle

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Neue Sensortechnik für E-Auto-Batterien
08.12.2016 | Ruhr-Universität Bochum

nachricht Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten
08.12.2016 | Institut für Solarenergieforschung GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie