Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolgreicher Divertor-Betrieb an Fusionsanlage WENDELSTEIN 7-AS

16.08.2001


Einbau der Divertor-Bauteile in das Plasmagefäß von WENDELSTEIN
7-A


An WENDELSTEIN 7-AS im Max-Planck-Institut für Plasmaphysik (IPP) in Garching haben die ersten Divertor-Experimente an einem WENDELSTEIN-Stellarator vielversprechende Ergebnisse geliefert. Mit der neuen Komponente, die für die Reinhaltung des Plasmas sorgt, konnten Plasmen mit guten Einschluss-Eigenschaften und bisher unerreichbar hoher Dichte erzeugt werden - noch über den Kraftwerkszielwert hinaus. Wie gewünscht nimmt die Wärmeisolation des Plasmas - die Energieeinschlusszeit - mit steigender Dichte zu, während die Einschlusszeit für Teilchen und Verunreinigungen abnimmt. Die unerwünschte Ansammlung von Verunreinigungen im Plasma wird damit unterbunden; volle Dichtekontrolle und quasi-stationärer Betrieb werden möglich.


Ziel der Fusionsforschung ist die Entwicklung eines Kraftwerks, das - ähnlich wie die Sonne - Energie aus der Verschmelzung von Atomkernen erzeugen soll. Brennstoff ist ein dünnes ionisiertes Gas - ein "Plasma" - aus den beiden Wasserstoffsorten Deuterium und Tritium. Zum Zünden des Fusionsfeuers muss der Brennstoff in einem ringförmigen Magnetfeldkäfig eingeschlossen und auf Temperaturen über 100 Millionen Grad aufgeheizt werden. Weltweit als einziges Institut betreibt das IPP die beiden wesentlichen Anlagentypen - Tokamak und Stellarator - parallel zueinander.

Zu den Kernfragen, die Tokamak und Stellarator gleichermaßen beschäftigen, gehören die Wärmeisolation des heißen Plasmas, die von der Güte des magnetischen Einschlusses abhängt, und die erreichbare Plasmareinheit. Die Tokamaks führte aus diesen Problemen 1982 die IPP-Anlage ASDEX (Axialsymmetrisches Divertor-Experiment) heraus: Ein zusätzliches Magnetfeld - der Divertor - lenkte die Randschicht des Plasmas auf speziell ausgerüstete Prallplatten am Boden des Plasmagefäßes. Hier wurden die Plasmateilchen zusammen mit Verunreinigungen neutralisiert und abgepumpt. In einem späteren Kraftwerk soll so auch die "Asche" des Fusionsprozesses - das bei der Verschmelzung von Deuterium und Tritium entstehende Helium - entfernt werden. Zugleich hüllt die Randschicht das zentrale Plasma wie ein wärmender Mantel ein, so dass eine verbesserte Wärmeisolation erreicht wird.


Mittlerweile sind alle modernen Tokamaks mit Divertor ausgerüstet; auch für ITER und für ein Kraftwerk ist das Bauteil vorgesehen. Mit WENDELSTEIN 7-AS wurde nun erstmals auch ein größerer Stellarator mit Divertor ausgestattet. Anders als beim Tokamak spaltet sich der Plasmarand eines Stellarators ohne weitere Maßnahmen - der Symmetrie des Magnetfeldes folgend - in einzelne Ausläufer auf. Diese sogenannten "Inseln" liegen aneinandergereiht wie die Perlen einer Kette um den Querschnitt des Plasmas und lenken Energie und Teilchen auf begrenzte Bereiche der Gefäßwand. Werden diese Flächen - ähnlich wie im Divertor-Tokamak - durch Prallplatten geschützt, dann können die hier auftreffenden Teilchen zusammen mit den Verunreinigungen aus dem Plasma entfernt werden.

Vorbereitet durch umfangreiche Modellrechnungen wurden in WENDELSTEIN 7-AS im vergangenen Jahr zunächst Kontrollspulen montiert, mit denen die Inseln am Plasmarand vergrößert oder verkleinert werden können. Anschließend wurden Prallplatten und Pumpen eingebaut - keine einfache Aufgabe angesichts der komplexen Stellaratorgeometrie, die, so Cheftechniker Günter Zangl, "keine einzige gerade Fläche bietet". Insgesamt zehn Divertor-Module, die sich in ihrer Form den Windungen des Plasmaschlauches anpassen, wurden ober- und unterhalb des Plasmaquerschnittes installiert. Mit kohlefaser-verstärktem Kohlenstoff belegt, widerstehen sie den großen Wärmebelastungen aus dem Plasma. Bei den erzielten hohen Plasmadichten bleibt die Belastung der Divertorplatten aber moderat: Bis zu 90 Prozent der Wärmeleistung aus dem Plasma können schonend als Lichtstrahlung - und nicht durch energiereiche Teilchen - an die Platten abgegeben werden.

Wie die Ergebnisse der ersten Experimentierkampagne von März bis Juli 2001 zeigen, hat sich der erste Divertor an einem WENDELSTEIN-Stellarator für die Verunreinigungs- und Dichtekontrolle ausgezeichnet bewährt. Einzig die Plasmatemperatur lässt noch Wünsche offen: In der kleinen Maschine mit beschränkter Heizleistung bleibt sie wegen der hohen Plasmadichte mit 5 Millionen Grad moderat. In weiteren Experimenten sollen nun die physikalischen Details geklärt werden.

Die gewonnenen Informationen sind insbesondere von Bedeutung für den Nachfolger WENDELSTEIN 7-X, der gegenwärtig im Teilinstitut Greifswald des IPP entsteht. Für die hier geplanten langen Entladungen von 30 Minuten Dauer ist die Kontrolle von Plasmadichte und Verunreinigungen besonders wichtig. WENDELSTEIN 7-X, der - anders als sein kleinerer Vorgänger in Garching - von vorneherein mit Divertor ausgerüstet ist, soll die Kraftwerkstauglichkeit des Stellarators demonstrieren.


Isabella Milch | idw
Weitere Informationen:
http://www.ipp.mpg.de/

Weitere Berichte zu: 7-AS Plasma Stellarator Tokamak Verunreinigung Wendelstein

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wie Protonen durch eine Brennstoffzelle wandern
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Omicron Diodenlaser mit höherer Ausgangsleistung und erweiterter Garantie
20.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften