Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ESA-Forschungssatellit nutzt Know-how aus Hannover

01.06.2005


Weltweit einzigartiges Kalibrierungsverfahren ermöglicht hochgenaue Positionierung des Satelliten

... mehr zu:
»ESA »GOCE »IfE »Satellit

Wenn im August 2006 der Forschungssatellit GOCE (Gravity field and steady state Ocean Circulation Explorer) der European Space Agency (ESA) ins Weltall geschossen wird, sorgt Technologie aus Hannover für den Erfolg der Mission: Mit einem weltweit einzigartigen Messverfahren ermöglicht das Institut für Erdmessung (IfE) der Universität Hannover eine permanente und präzise Positionsbestimmung des Satelliten im All.

Nur durch eine exakte Positionsbestimmung ist der Satellit in der Lage, hochgenaue Messungen des Erdschwerefelds zu erzielen. Dazu nutzt der Satellit eine komplexe GPS-Empfangseinheit (Global Positioning System). Dieses System ist im Weltraum einer Vielzahl von Einflüssen ausgesetzt, die das Messergebnis verfälschen können oder deren exakte Interpretation erschweren. Besonders gravierend wirken sich dabei die so genannten "Variationen des Antennenphasenzentrums" aus, die durch die Reflexionen des Solar-Sonnensegels noch verstärkt werden können. Derartige Nahfeldeinflüsse konnten die Forscher der Universität Hannover nun erstmals auf der Erde simulieren und so deren Auswirkungen auf die Messergebnisse exakt vorhersagen. "Damit geben wir der ESA die Möglichkeit, die von GOCE aufgezeichneten Positionsdaten von Fehlern zu bereinigen, um so zu hochpräzisen Ergebnissen zu gelangen", erklärt Florian Dilßner, der beim IfE für die praktische Durchführung der Kalibrierung zuständig ist.


Um die Störungen simulieren zu können, wurde ein Modell des Sonnensegels des Satelliten nach Hannover geliefert, und dort mit einer GPS-Antenne auf einem Spezialroboter montiert. Dieser ermöglicht durch besondere Dreh- und Kippbewegungen eine Kalibrierung, die verfälschende Reflexionen der Messumgebung (zum Beispiel Hauswände oder Autos) ignoriert. So konnten die Störungen, die aus den umgebenden Sonnenkollektoren resultieren, isoliert betrachtet und bewertet werden. "Nur mit dieser speziellen Kalibrierung ist der Satellit später im All in der Lage, seine Position auf bis zu einen Zentimeter genau zu bestimmen, und das über eine Entfernung von 20 000 Kilometern", erklärt Dilßner. Denn während GOCE als LEO (Low Earth Orbiter) in einer Höhe von "nur" 250 Kilometern um die Erde kreist, kommuniziert er für die Positionsbestimmung mit GPS-Satelliten, die in deutlich höheren Umlaufbahnen schweben (20.200 Kilometer).

Der Forschungssatellit GOCE soll voraussichtlich ab Mitte 2006 neue Erkenntnisse über das globale Erdschwerefeld liefern. Die präzise Kenntnis des Schwerefelds ist zum Beispiel die Voraussetzung für die Bestimmung von Meeresspiegelschwankungen. So erhoffen sich die Forscher, mit den von GOCE gesammelten Daten besser vorhersagen zu können, wie sich die globale Erwärmung langfristig auf die Ozeane auswirkt.

Mit dieser besonderen Variante der Antennenkalibrierung ist das IfE weltweit führend. Entwickelt wurde das Verfahren in Kooperation mit der Firma Geo++ aus Garbsen. Im Auftrag der ESA arbeitet das IfE gemeinsam mit dem italienischen Raumfahrtunternehmen Alenia Spazio, Turin an diesem Projekt.

Dr. Stefanie Beier | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Berichte zu: ESA GOCE IfE Satellit

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics