Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleitung - Elektronen im Gänsemarsch liefern neue Erkenntnisse

22.11.2004


Aufnahme einer Platinoberfläche mit strukturierten Ketten einzelner Atome. Sichtbar gemacht im Raster-Tunnel-Mikroskop. (© Erminald Bertel)


Ein Team der Universität Innsbruck hat es geschafft, Elektronen in Metallen zu geordneten Bewegungen entlang vorgegebener Bahnen zu zwingen. Dieses in Metallen erstmals beobachtete Verhalten liefert wichtige Erkenntnisse über die Wechselbeziehungen von Elektronen - und darüber, wie es zu dem als Supraleitung bezeichneten Phänomen des Stromflusses ohne Verlust kommen kann. Damit verbindet dieses vom Wissenschaftsfonds FWF geförderte Projekt Grundlagenforschung im besten Sinne mit möglichen Anwendungen in der Zukunft.

... mehr zu:
»Elektron »Supraleitung »Temperatur

Hochtemperatur-Supraleiter sind keramische Materialien, die unterhalb einer bestimmten Temperatur den elektrischen Strom ohne Widerstand - und damit ohne Verlust - leiten. Bei höheren Temperaturen ändert sich das Verhalten aber sprunghaft und der Stromfluss erfährt Widerstand. Solche sprunghaften Veränderungen auf Grund äußerer Einflüsse sind charakteristisch für so genannte "smart materials". Deren "Sprunghaftigkeit" ist eng verknüpft mit einer gegenseitigen Abhängigkeit räumlich eingeschränkter Elektronen, die zu einem gemeinsam abgestimmten Bewegungsmuster führt. Bis jetzt war diese als Korrelation bezeichnete Abhängigkeit nur bei Nicht-Metallen beobachtet worden.

Elektronen in Reih und Glied ...


Nun ist es einem Team um Prof. Erminald Bertel, Institut für Physikalische Chemie, Universität Innsbruck, erstmals gelungen, Elektronen auch in Metallen in eine solche gegenseitige Abhängigkeit zu zwingen. Dazu haben die ForscherInnen zunächst Nanostrukturen auf der Oberfläche von Metall-Einkristallen, also Kristallen mit einheitlicher Gitterstruktur, erzeugt.

Der Projektleiter Prof. Bertel erläutert: "Normalerweise breiten sich Elektronen in Metallen in alle drei Raumrichtungen aus. Wenn aber das Metall als Einkristall vorliegt, gibt es Elektronen, die sich nur an der Oberfläche, also in zwei Dimensionen, ausbreiten können. Nanostrukturen können dann die Bewegungsfreiheit dieser Elektronen weiter einschränken. Zur Herstellung solcher Strukturen können z. B. Oberflächen von Kupfer-Kristallen so oxidiert werden, dass freie Kupferkanäle von 3 Nanometer Breite zwischen Erhebungen von Kupferoxid liegen. In diesen Kanälen können sich Elektronen nur noch eindimensional bewegen. Auch auf Platin-Kristallen können Atomketten in Abständen von ca. 0,8 Nanometer angeordnet werden. Die Ausbreitung bestimmter Elektronen kann dann nur entlang dieser Ketten erfolgen."

Waren die Elektronen erstmal zu einer geordneten Bewegung entlang der Kanäle oder Ketten gezwungen, konnte das Team um Prof. Bertel etwas Faszinierendes beobachten: Je nach Versuchsbedingungen bewegen sich die Elektronen völlig unabhängig voneinander - inkohärent - in den einzelnen Kanälen, oder sie stimmen quer über alle Kanäle ihre Bewegungen aufeinander ab. Bei einem solchen als kohärent bezeichneten Bewegungszustand lassen sich die Elektronen nicht mehr einzelnen Kanälen zuordnen, sie sind "delokalisiert".

... wenn die Temperatur passt

Zur näheren Analyse der Elektronen-Zustände verwendeten die Innsbrucker ForscherInnen auch die Photoelektronenspektroskopie. Bei dieser Methode wird die energetische Verteilung von Elektronen gemessen, die durch Licht (Photonen) aus der Oberfläche herausgeschlagen werden. Interessanterweise zeigten die Spektren, dass die Elektronen oberhalb einer kritischen Temperatur aus dem kohärenten in einen inkohärenten Zustand übergehen.

Eine ganz gleichartige Temperaturabhängigkeit von Photoelektronenspektren ist jedoch auch schon von Supraleitern bekannt - wurde aber bisher unterschiedlich erklärt. Jetzt legen die Beobachtungen des Innsbrucker Teams nahe, dass die Supraleitung in keramischen Supraleitern mit einem Übergang von Elektronen aus einem inkohärenten in einen kohärenten Zustand verknüpft ist.

Dazu Prof. Bertel: "Die Stromleitung ohne Verlust durch elektrischen Widerstand könnte einen signifikanten Beitrag zur Energieeinsparung und zur Lösung einiger Umweltprobleme leisten. Aber derzeit erlaubt unser Verständnis der Supraleitung noch nicht, supraleitende Materialien zu synthetisieren, die einen großtechnischen Einsatz unter wirtschaftlichen Bedingungen gestatten. Unserem Team ist es gelungen, einen kleinen Mosaikstein in das Bild einzufügen, was uns solchen Anwendungen ein wenig näher bringt."

Wissenschaftlicher Kontakt:

Prof. Erminald Bertel
Institut f. Physikalische Chemie
Universität Innsbruck
Innrain 52a, A-6020 Innsbruck
T +43.512.507-5050
E erminald.bertel@uibk.ac.at

Der Wissenschaftsfonds FWF
Mag. Stefan Bernhardt
Weyringergasse 35, A-1040 Wien
T +43.1.50567-4036
E bernhardt@fwf.ac.at

Erminald Bertel | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Berichte zu: Elektron Supraleitung Temperatur

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wie Protonen durch eine Brennstoffzelle wandern
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Omicron Diodenlaser mit höherer Ausgangsleistung und erweiterter Garantie
20.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie