Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kürzeste Lichtimpulse erzeugt, Völlig neue Experimente werden nun möglich

06.11.2000


Am Institut für Hochfrequenztechnik und Quantenelektronik (IHQ) ist es Professor Dr. Franz Kärtner und seinen Mitarbeitern Dr. Uwe Morgner und Richard Ell gelungen, die derzeit kürzesten Lichtimpulse direkt aus einem Laser zu erzeugen. Diese Pulse umfassen weniger als zwei optische Schwingungen und sind nur noch fünf Femtosekunden lang. Eine Femtosekunde entspricht der unvorstellbar kurzen Zeitdauer von einem Millionstel einer Milliardstel Sekunde.

Möglich wurde dies durch neue Erkenntnisse über die Impulsformung im Laser und extrem breitbandige Laserspiegel, die durch eine langjährige Zusammenarbeit mit dem Massachusetts Institute of Technology (MIT) entwickelt wurden. Laserimpulse dieser Kürze ermöglichen völlig neue Experimente in den Ingenieur- und Naturwissenschaften, zum Beispiel in der Elektronik, der Optik und der Kurzzeitlaserspektroskopie, sowie mit hochauflösenden nichtinvasiven Abbildungsverfahren wie etwa der optischenKohärenztomographie.

Zur zeitlichen Vermessung ultraschneller Vorgänge benötigt man Abtastsignale, deren zeitliche Dauer kleiner als oder zumindest gleich groß wie die zu messenden Zeitkonstanten sind. Die momentan kürzesten technisch erzeugten und genutzten Ereignisse überhaupt sind Impulse aus Lasern, die mit hohen Wiederholraten im 100-MHz-Bereich und Dauern im Piko- und Femtosekundenbereich emittiert werden. In den vergangenen drei Jahrzehnten haben sich die Techniken kontinuierlich zu kürzeren Impulsbreiten hin weiterentwickelt und auf diesem Weg immer neue und tiefere Einblicke in ultraschnelle Vorgänge in Physik, Chemie, Biologie und Medizin eröffnet. Dabei spielt nicht nur die zeitliche Kürze, sondern auch die damit verbundene hohe optische Bandbreite für viele hochauflösende Untersuchungsmethoden eine entscheidende Rolle.

Ein Ende der ständig nach unten korrigierten Pulsrekorde ist noch lange nicht absehbar; trotzdem markiert der Laser am IHQ einen bemerkenswerten Schritt, kommt man doch in einen Bereich, in dem nicht allein der Impuls als mikrometer-dünnes Scheibchen lokalisierter Photonenenergie eine Rolle spielt (eine Femtosekunde entspricht 0,3 Mikrometern). Es tritt bei diesen Pulsbreiten auch das korrespondierende elektro-magnetische Feld im Wellenbild zutage, da eben bei optischen Impulsen im Bereich von fünf Femtosekunden die Feldamplitude während der Dauer des Impulses nur noch wenigerals zweimal durchschwingen kann.

Zur Bestimmung der tatsächlichen Impulsbreite wurde eine sogenannte interferometrischeAutokorrelation (IAC) aufgenommen. Die IAC ist ein relativ einfaches Mittel, um die Pulsbreiten ultrakurzer Pulse abzuschätzen: Man überlagert den Impuls mit einer zeitversetzten identischen Kopie in einem Frequenzverdopplerkristall, der das Licht um 800 Nanometer in den blauen Bereich um 400 Nanometer transformiert. Die IAC erhält man, indem man das blaue Interferenzsignal gegen die Zeitverschiebung der zwei Pulskopien aufträgt. Daraus kann die volle Impuls-Halbwertsbreite von fünf Femtosekunden abgeleitet werden. Diese Pulse sind weltweit die kürzesten, die jemals direkt von einem Laseroszillatorerzeugt wurden.

Mit einem Laser dieser Art konnte von den Kooperationspartnern am MIT in Cambridge/USA eine bis dahin unerreichte Verbesserung im Bereich der ophtalmologischen Optischen Kohärenz-Tomographie (OCT) erreicht werden. OCT ist ein Bildgebungs-verfahren, dessen Auflösung von der Kohärenzlänge der verwendeten Lichtquelle abhängt. Da kurze Impulse per se einer kurzen Kohärenzlänge entsprechen, ist dieser Titan-Saphir-Laser die Lichtquelle, die weltweit die höchste Auflösung in OCT verspricht.

In der Augenheilkunde sind optische Diagnoseverfahren seit langem etabliert. OCT wird vielerorts bereits im klinischen Alltag eingesetzt, und Geräte mit 10 bis 15 Mikro-Meter Tiefenauflösung sind kommerziell erhältlich. Durch den Einsatz der ultra-hoch-auflösenden Technik mit dem Titan-Saphir Laser als Lichtquelle konnte im Labor die Tiefenauflösung auf unter drei Mikrometer reduziert werden. Dadurch konnten Bilder vom menschlichen Auge aufgenommen werden, die unter anderem zur frühzeitigen Diagnose des grünen Stars (Glaukom) verwendet werden können. Die Auflösung, die hier an Versuchspersonen erzielt wurde, kommt der Auflösung herkömmlicher mikroskopischer Histopathologie nach Gewebeentnahme sehr nahe.

Selbstverständlich ist dieses System momentan für den klinischen Alltag wegen seiner Komplexität noch ungeeignet. Es muss noch viel Arbeit in die Entwicklung kompakter breitbandiger Lichtquellen investiert werden, bis die hier vorgestellte Bildqualität tatsächlich breit verfügbar wird. Trotzdem sind diese Arbeiten wegweisend für das, was in ein paar Jahren Standard-Diagnostik sein könnte.

Die Jagd nach neuen Weltrekorden und kürzeren Laserimpulsen hat ihren Preis, Laserforschung ist vergleichsweise teuer, und Geldgeber sind von sinkenden Impulsbreiten allein wenig beeindruckt. Das immense Anwendungspotenzial, von dem in diesem Artikel nur eine winzige Facette beleuchtet werden konnte, hat das Institut jedoch darin bestärkt, diesen Forschungszweig konsequent und zielstrebig weiter zu verfolgen.

Nähere Informationen:
Professor Dr. Franz Xaver Kärtner-


Dr. Uwe Morgner
Tel.: (0721) 608 2486
E-Mail: morgner@ihq.uni-karlsruhe.de

Nur noch fünf Femtosekunden lang sind die Lichtimpulse, die am Institut für Hochfrequenztechnik und Quantenelektronik der Universität Karlsruhe erzeugt werden konnten - das entspricht der unvorstellbar kurzen Zeit von fünf Millionstel einer Milliardstel Sekunde. Laserimpulse dieser Kürze ermöglichen völlig neue Experimente in den Ingenieur- und Naturwissenschaften, zum Beispiel in der Elektronik, der Optik und der Kurzzeitlaserspektroskopie, sowie bisher unerreichte Auflösungen in nichtinvasiven Abbildungsverfahren in Biologie und Medizin wie etwa der optischen Kohärenztomographie. Das Bild senden wir Ihnen auf Anfrage gerne zu.


Foto: Thilo Mechau


Diese Presseinformation ist im Internet abrufbar unter:
http://www.uni-karlsruhe.de/~presse/Pressestelle/pi119.html

Weitere Informationen finden Sie im WWW:

Dr. Elisabeth Zuber-Knost | idw

Weitere Berichte zu: Femtosekunde Impuls Laser Lichtimpuls Lichtquelle OCT

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle
17.08.2017 | Universität Potsdam

nachricht Lasersensoren LAH-G1 – Optische Abstandssensoren mit Messwertanzeige
15.08.2017 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie