Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Informationen können elektrisch geschaltet werden

29.07.2004


Kristallforschung weist den Weg zu effektiveren Speichern - Veröffentlichung in ’Nature’



Magnetische Informationen werden gewöhnlicherweise mittels magnetischer Felder geschrieben, zum Beispiel im Informationsspeicher einer Computer-Festplatte. Um in Zukunft noch effektivere Speicher bauen zu können, verfolgen Forscher unterschiedliche Ansätze in der Grundlagenforschung. Die Tübinger Wissenschaftler Thomas Lonkai, Uwe Amann und Prof. Jörg Ihringer vom Institut für Angewandte Physik haben nun in Zusammenarbeit mit den Berliner Wissenschaftlern Thomas Lottermoser und Manfred Fiebig vom Max-Born-Institut sowie Prof. Dietmar Hohlwein vom Hahn-Meitner-Institut nachgewiesen, dass die magnetische Ordnung in Informationsspeichern auch mittels elektrischer Felder geschaltet werden kann. Dies wird möglich durch spezielle Kristalle, hexagonale Manganite, deren kompliziertes Wechselspiel elektrischer und magnetischer Eigenschaften zu diesem Zweck genutzt werden kann. Die Forschungsergebnisse werden in der aktuellen Ausgabe der renommierten Fachzeitschrift Nature veröffentlicht (Nature, Band 430, Seite 541, vom 29. Juli: "Magnetic Phase Control by an Electric Field")



Die Forscher haben in der keramischen Verbindung Holmiummanganit ein System gefunden, dessen magnetische Phase durch ein externes elektrisches Feld kontrolliert werden kann. Das elektrische Feld schaltet die ferromagnetische Ordnung in diesen Kristallen an und ab. Den Einfluss eines elektrischen Feldes auf die magnetische Ordnung haben die Forscher in optischen Messungen nachgewiesen, indem sie die so genannte optische zweite Harmonische, eine Verdopplung der Frequenz einer Lichtwelle im Kristall, untersucht haben. Zudem haben sie bei Anlegen eines elektrischen Feldes eine für einsetzende ferromagnetische Ordnung typische Änderung der Schwingungsrichtung des Lichts beobachtet.

Die Wissenschaftler haben die Vorgänge auch auf mikroskopischer Ebene untersucht. Von außen sieht es so aus, als ob die Anordnung der Atome eines Kristalls in einem Gitter fest wäre. Die mikroskopische Analyse der Atompositionen weist jedoch häufig Änderungen der Atompositionen auf, zum Beispiel in Abhängigkeit von der Temperatur oder angelegten magnetischen oder elektrischen Feldern, welche zu Änderungen der Materialeigenschaften führen. In dieser Arbeit konnten die Wissenschaftler feldabhängige Verschiebungen der
Atompositionen im Kristallgitter, dadurch Änderungen der magnetischen Austauschpfade nachweisen und mit diesen das Schalten der magnetischen Ordnung erklären. Mit den Ergebnissen eröffnen sich Möglichkeiten zur Konstruktion neuartiger und effektiverer magnetischer Informationsspeicher. Die Wissenschaftler können nun Grundanforderungen an Materialien ableiten, die für eine magnetoelektrische Phasenkontrolle genutzt werden könnten.

Der Forschungserfolg hat sich durch die Zusammenarbeit in einem Kooperationsnetzwerk verschiedener Wissenschaftler ergeben. Den Beitrag aus Tübingen erarbeitete der Bereich Röntgen- und Neutronenstreuung des Instituts für Angewandte Physik, der aus dem Institut für Kristallographie hervorgegangen ist. Dessen Forschungsthemen sind neue magnetische Materialien, neue experimentelle Techniken zur Röntgen- und Neutronenbeugung und die Entwicklung neuer Verfahren zur Auswertung mittels Statistik und Gruppentheorie. Die Apparaturen zur Röntgenbeugung stehen in Tübingen, die Messungen mit Neutronen werden am Institut Laue-Langevin in Grenoble und am Hahn-Meitner-Institut in Berlin durchgeführt. Am Berliner Max-Born-Institut laufen laseroptische Experimente. Mit dem Hahn-Meitner-Institut ist die Uni Tübingen über einen Kooperationsvertrag und ein vom Bundesministerium für Bildung und Forschung finanziertes Projekt zum Ausbau eines Diffraktometers zur Neutronenstreuung verbunden.

Nähere Informationen:

Thomas Lonkai
Institut für Angewandte Physik
Universität Tübingen
c/o Hahn-Meitner-Institut Berlin
Glienicker Straße 100, 14109 Berlin
E-Mail lonkai@hmi.de
Tel. 030-806227-08

Michael Seifert | idw
Weitere Informationen:
http://www.hmi.de

Weitere Berichte zu: Hahn-Meitner-Institut Kristall Neutronenstreuung

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Kompakte Rangierfelder für RJ45-Module
25.09.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Sicherungsklemmen für unterschiedliche Einsatzgebiete
18.09.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy