Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomare Struktur von Nanoteilchen entschlüsselt

22.07.2004


Die Infrarotspektren von größenselektierten Nanoteilchen (Clustern) wurden im Experiment gemessen. Die untere Kurve zeigt ein experimentelles Spektrum für einen Cluster aus acht Vanadium-Atomen. Mit Hilfe theoretischer Berechnungen können dann die Strukturen dieser Cluster und ihre Infrarotspektren bestimmt werden. Stimmen die berechneten und die experimentellen Spektren überein, kann man davon ausgehen, dass die berechneten Strukturen denjenigen entsprechen, die auch im Experiment nachgewiesen wurden. In der oberen Kurve ist ein gerechnetes Spektrum zusammen mit der entsprechenden Struktur zu sehen. Zieht man die Unwägbarkeiten von Theorie und Experiment in Betracht, so ist die Übereinstimmung sehr hoch. Im Hintergrund sieht man die Oberfläche eines Vanadium-Festkörpers. Bild: Fritz-Haber-Institut


Internationalem Forscherteam gelingt es mit Ferninfrarot-Spektroskopie erstmals, die Struktur von winzigen Metall-Nanoteilchen aufzuklären


Eine neue Methode, mit der man die atomare Struktur einzelner Metall-Nanoteilchen bestimmen kann, haben Wissenschaftler des Berliner Fritz-Haber-Institut der Max-Planck-Gesellschaft, des FOM-Instituts für Plasmaphysik in Nieuwegein/Niederlande, der Universität von Kalifornien in Los Angeles/USA sowie der Universität Nijmegen/Niederlande entwickelt. Die winzigen Teilchen aus nur 6 bis 23 Vanadium-Atomen wurden mit Hilfe der so genannten Ferninfrarot-Spektroskopie untersucht: Je nach ihrer Größe entstehen unterschiedliche Spektren, echte "Fingerabdrücke" ihrer atomaren Struktur. Aus dem Vergleich mit Spektren, die mit der Dichtefunktional-Theorie errechnet werden, kann man dann die geometrische Struktur der Nanoteilchen bestimmen.

Kleine Metallpartikel gewinnen rasant an Bedeutung in der Nanotechnologie und Katalyse. Diese Nanoteilchen haben nur eine Größe von einigen wenigen bis einigen Hundert Atomen. Ihre Geometrie und Elektronenstruktur ist anders als die des Gesamtmaterials und sie können überraschende Eigenschaften aufweisen: So zeigen Gold-Nanopartikel katalytische Aktivität. Zudem können ihre Eigenschaften extrem von der Größe abhängen und sich bereits drastisch ändern, wenn man einem solchen Cluster nur ein einziges Atom hinzufügt. Ziel der Forschung ist es, solche Nanoteilchen in der Materialwissenschaft, der Nanoelektronik oder der Katalyse gezielt einsetzen zu können.


Heute ist die mikroskopische Struktur, also die Anordnung der Atome, in Festkörpern zumeist sehr detailliert bekannt. Die Kenntnis der Struktur ist wiederum eine elementare Voraussetzung, um die chemischen und physikalischen Eigenschaften von Materialien verstehen und nutzen zu können. Hingegen ist die Situation bei Nanoteilchen aus dem gleichen Material komplett anders: Diese Partikel zeigen faszinierende Eigenschaften, doch ihre innere atomare Struktur zu bestimmen ist äußerst schwierig.

Dem deutsch-niederländisch-amerikanischen Wissenschaftlerteam ist es nun gelungen, in einer Kombination aus experimentellen und theoretischen Untersuchungen die Struktur von Metall-Nanoteilchen zu bestimmen. Im Experiment haben sie die Schwingungseigenschaften der Teilchen mit Hilfe der Infrarot-Mehr-Photonen-Dissoziation (IR-MPD) gemessen und damit jene Kräfte bestimmt, die Atome im Nanoteilchen zusammenhalten. Die Experimente wurden am "Free Electron Laser for Infrared eXperiments (FELIX)" des FOM-Instituts durchgeführt. Die gemessenen Infrarotspektren hängen stark von der Teilchengröße und -struktur ab und sind charakteristisch für die geometrische Anordnung der Atome. Ein Vergleich mit quantenmechanischen Modellen, basierend auf der Dichte-Funktional-Theorie, gestattet es dann, die Strukturen der Nanoteilchen aufzuklären.

Diese Untersuchungen zeigen, dass man mit Ferninfrarot-Spektroskopie in Kombination mit theoretischen Berechnungen einzigartige Informationen über metallische Nanopartikel gewinnen kann. Diese schaffen die Grundlage für ein tieferes Verständnis der Struktur von Metall-Nanoteilchen, eine wichtige Voraussetzung, um sich deren Eigenschaften in Zukunft stärker zunutze machen zu können.

Dieses Projekt ist Teil des Forschungsprogramms der Stiftung "Stichting voor Fundamental Onderzoek der Materie" (FOM) der "Nederlands organisatie voor Wetenschappelijk Onderzoek" (NWO). Es wurde zudem unterstützt durch die Max-Planck-Gesellschaft, die Europäische Union sowie die Deutsche Forschungsgemeinschaft.

Originalveröffentlichung:
A. Fielicke, A. Kirilyuk, Ch. Ratsch. J. Behler, M. Scheffler, G. von Helden and G. Meijer
Structure determination of isolated metal clusters via far-infrared spectroscopy
Physical Review Letters 93, p. 023401, July 7, 2004

Weitere Informationen erhalten Sie von:

Dr. Gert von Helden
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Tel.: 030 8413-5615
Fax: 030 8413-5603
E-Mail: helden@fhi-berlin.mpg.de

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.fhi-berlin.mpg.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher entwickeln effizientere Systeme für Brennstoffzellen und Kraft-Wärme-Kopplung
19.04.2017 | EWE-Forschungszentrum für Energietechnologie e. V.

nachricht Forscher entwickeln Elektrolyte für Redox-Flow-Batterien aus Lignin aus der Zellstoffherstellung
18.04.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungsnachrichten

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik