Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartiger Mikroresonator erhöht die Lichtausbeute von Silizium-Leuchtdioden signifikant

12.07.2004


oben: konventionelle Silizium Leuchtdiode, unten: neue Silizium Mikroresonator Leuchtdiode


Ausschnitt eines Silizium-Wafers mit Dioden


Silizium ist das Schlüsselmaterial der Mikroelektronik. Im Forschungszentrum Rossendorf (FZR) wurde ein neuartiges Mikroresonator-Konzept - eine besondere Spiegel-Anordnung von nur einem Millionstel Meter Dicke - vorgestellt, mit dem sich die Lichtausbeute von Silizium-Leuchtdioden signifikant erhöhen lässt. Damit kann die Kommunikation zwischen Silizium-Chips mit Licht realisiert werden.


Ausschnitt eines Silizium-Wafers mit Dioden

Wegen der weit fortgeschrittenen Siliziumtechnologie wäre es ein großer Durchbruch, wenn auch Lichtquellen für die optische Datenübertragung auf der Basis von Silizium realisiert werden könnten. Damit könnten Silizium-Chips nicht nur rechnen, sondern auch gleich ihre Ergebnisse mit Lichtgeschwindigkeit an eine andere Stelle übermitteln. Silizium-Lichtquellen wären kostengünstiger in der Herstellung als andere teure Materialien (insbesondere die heute genutzten Verbindungshalbleiter wie Galliumarsenid oder Indiumphosphid) und könnten auf einem Siliziumchip mit elektronischen Komponenten angesteuert werden. Langfristig ist das Ziel, eine optische Verbindungstechnik auf der Basis von Silizium zu realisieren, woran zum Beispiel der Chiphersteller Intel intensivst in seinen Forschungslaboren arbeitet. Entsprechend Goethes letzten Worten "Mehr Licht..." rufen die Forscher daher verstärkt nach "Mehr Licht aus Silizium".


Das Forschungszentrum Rossendorf (FZR) beschäftigt sich seit mehreren Jahren erfolgreich mit der Herstellung von Silizium-basierten Lichtquellen (Lichtemittern). So konnte vor kurzem die erste ultraviolette Lichtquelle (UV-Emitter) in Siliziumtechnologie hergestellt werden, die großes Interesse im Bereich der Biosensorik erfährt (FZR-Pressemitteilung vom 29.06.2004). Für die Datenübertragung sind jedoch größere Wellenlängen im sogenannten Nah-Infraroten Bereich des Lichtspektrums gefragt (Nah-Infrarot ist der Bereich am roten Ende des sichtbaren Spektrums, in dem die Empfindlichkeit des Auges gerade aufhört, in Wellenlänge ausgedrückt handelt es sich um den Bereich von 750 bis 2500 Nanometer). Silizium ist jedoch von Natur aus völlig ungeeignet, um Licht bei diesen Wellenlängen effizient auszusenden. Eine Tatsache, die in den letzten Jahren weltweit zu großen Forschungsaktivitäten führte, um dieses fundamentale Problem zu überwinden.

Dem FZR-Forscherteam um Dr. Thomas Dekorsy gelang es nun, die Lichtemission von Silizium-Leuchtdioden bei der Wellenlänge von 1100 Nanometern signifikant zu erhöhen. Die Bauelemente basieren auf Silizium-Dioden, in die hochenergetische Atome (Ionen) hineingeschossen werden (sogenannte Ionenimplantation). Diese Atome modifizieren das Silizium in der Art und Weise, dass die Lichtemission um einen Faktor 1000 ansteigt(1). Es bleibt jedoch ein grundlegendes Problem bestehen: das im Halbleiter erzeugte Licht tritt nur zu wenigen Prozent aus der Leuchtdiode aus, ein großer Rest von über 95% ist gewissermaßen gefangen. Dieser Nachteil konnte durch einen neuartigen Silizium-Mikroresonator überwunden werden, einer Art Minispiegelanordnung von nur einem Millionstel Meter Dicke. Ein solcher Mikroresonator erhöht die Lichtausbeute bei einer gewünschten Wellenlänge und macht sie wesentlich gerichteter. Zu diesem Zweck wird die Leuchtdiode auf einer im Silizium vergrabenen, metallischen Schicht (Kobaltdisilizid) gefertigt. Diese Schicht dient als unterer Spiegel des Mikroresonators und gleichzeitig als elektrischer Kontakt an die Leuchtdiode. Die Fertigung dieses vergrabenenen Spiegels trug das Forschungszentrum Jülich bei. Den oberen Spiegel des Mikroresonators bildet ein Stapel aus mehreren Siliziumdioxid- und Silizium-Schichten, die mit einer Genauigkeit von wenigen Nanometern im Reinraum des FZR auf die Leuchtdiode aufgebracht werden.

"Mikroresonator-Konzepte sind seit Anfang der 90er Jahre bekannt", erläutert Thomas Dekorsy, Leiter der Abteilung Halbleiterspektroskopie im FZR. "Die Schwierigkeit bestand jedoch immer darin, dass die Resonatorspiegel aus einem Schichtstapel elektrischer Isolatoren bestehen, was die elektrische Kontaktierung des Licht-aussendenden Schicht verhindert. Diese Schwierigkeit haben wir mit unserem Konzept elegant umgangen und gleichzeitig die Kompatibilität zur Silizium-Prozesstechnologie gewahrt."

Mit dem nun vom FZR realisierten Mikroresonator-Konzept konnte die Effizienz der Silizium-Leuchtdioden weiter gesteigert werden, wobei die theoretischen Grenzen des Konzepts mit der gegenwärtigen Fertigungstechnologie bei weitem noch nicht erreicht sind. Das Mikroresonator-Konzept wurde vom FZR als Patent eingereicht(2) und erstmals in der renommierten Zeitschrift Electronics Letters einer breiten Öffentlichkeit vorgestellt(3).

(1) Origin of anomalous temperature dependence and high efficiency of silicon light-emitting diodes, J. Sun u.a., Applied Physics Letters Bd. 83, S. 3385-3887 (2003)
(2) Silizium basiertes optoelektronisches Bauelement, T. Dekorsy u.a., eingereicht zum Deutschen Patentamt (10348269.5)
(3) Silicon based electrically driven microcavity LED, J. Potfajova u.a., Electronics Letters Bd. 40, S. 904-906 (2004)
http://ioj.iee.org.uk/journals/el/2004/14/

Ansprechpartner:

Dr. Thomas Dekorsy
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260-2880; Email: t.dekorsy@fz-rossendorf.de

Prof. Manfred Helm
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260-2260; Email: m.helm@fz-rossendorf.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.intel.com/technology/itj/index.htm

Weitere Berichte zu: FZR Leuchtdiode Lichtausbeute Mikroresonator Silizium Wellenlänge

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ein leistungsfähiges Lasersystem für anspruchsvolle Experimente in der Attosekunden-Forschung
19.07.2017 | Forschungsverbund Berlin e.V.

nachricht Solarenergie unterstützt Industrieprozesse
17.07.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie