Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserblitze erhellen den Mikrokosmos

06.07.2004


Mit ultrakurzen Lichtpulsen erzeugen Forscher am MBI exotische Materiezustände


Wir simulieren auf allerkleinstem Raum Verhältnisse, wie sie im Inneren einer Sonne herrschen. So umschreibt Dr. Matthias Schnürer vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie seine Arbeit. Diese Versuche sind Teil eines neuen Sonderforschungsbereiches, den die DFG kürzlich bewilligt hat. Der Sonderforschungsbereich/Transregio heißt Relativistische Laser-Plasma-Dynamik , seine Besonderheit ist, dass er über drei Universitäten (Düsseldorf, München, Jena) und zwei außeruniversitäre Institute (Max-Planck-Institut für Quantenoptik, Garching, und Max-Born-Institut Berlin) verteilt ist. Sprecher ist Professor Dr. Oswald Willi von der Heinrich-Heine-Universität Düsseldorf.

Warum relativistisch? Licht ist ein elektromagnetisches Wechselfeld, das geladene Teilchen, also auch Elektronen, beschleunigen kann. Unser Laserlicht ist so stark, dass Elektronen in diesem Feld selbst bis auf Lichtgeschwindigkeit beschleunigt werden und das, obwohl sie in einer Millionstel Sekunde hundert Millionen mal ihre Bewegungsrichtung umkehren, eine schwindelerregende Karussellfahrt. Eine solche Bewegung kann nur noch mit Einsteins Relativitätstheorie beschrieben werden, erläutert der Berliner Forscher Matthias Schnürer, daher nennen wir sie relativistisch. Selbst wenn Elektronen extrem leicht sind und daher leicht beschleunigt werden können, benötigt man für relativistische Bewegungen enorme Lichtleistungen. Zurzeit erzeugen die Wissenschaftler in dem Höchstleistungs-Laserlabor des MBI kurzfristig Lichtleistungen von vielen Milliarden Kilowatt. Zum Vergleich: Das Blitzlicht eines Fotoapparats setzt kurzfristig tausend Watt frei, also ein Kilowatt. Ein Kilo Sprengstoff (TNT) liegt bei einer Million Watt, das ist ein Megawatt. Ein Blitz bei einem Gewitter kommt immerhin schon auf eine Billion Watt (10 hoch zwölf oder ein Terawatt, eine Milliarde Kilowatt). Der Hochleistungslaser am MBI schafft derzeit 25 Terawatt, 100 Terawatt sind demnächst vorgesehen. Anders ausgedrückt: Die MBI-Forscher setzen kurzfristig mehr Lichtleistung frei als alle Kraftwerke der Welt im Dauerbetrieb erzeugen. Und sie können dennoch die Stromrechnung bezahlen. Denn diese immense Energiedichte dauert nur extrem kurz. Die Zeitskala ist dabei ebenso unvorstellbar klein wie die Leistungsskala groß: Unsere Pulse dauern etwa dreißig Femtosekunden, sagt Schnürer. Eine Femtosekunde ist der milliardste Teil einer Millionstelsekunde. Außerdem ist die Fläche sehr klein, die bestrahlt wird. Wir fokussieren den Strahl auf wenige Mikrometer Durchmesser, sagt Schnürer, also wenige tausendstel Millimeter.


In diesem Kosmos von wenigen Kubikmikrometern Raum entsteht dann ein Plasma mit extrem schnellen Teilchen. Schnürer: Wichtige Fragen für uns sind: Wie wird Energie in solch relativistischen Plasmen transportiert? Wie funktioniert überhaupt so ein Plasma? Um das herauszufinden, bedienen sich die Forscher eines Kniffs. Sie nutzen Eigenschaften des relativistischen Plasmas, um das Plasma selbst zu untersuchen. Der exotische Materiezustand führt nämlich dazu, dass nicht nur Elektronen, sondern auf Umwegen auch die viel schwereren Protonen beschleunigt werden ein Protonenstrahl entsteht. Diese positiv geladenen Bestandteile eines Atomkerns, die in einem lasererzeugten Plasma entstehen, werden durch ein zweites, benachbartes Plasma geschossen und darin abgelenkt. Wir untersuchen diese Ablenkung, berichtet Schnürer, und gewinnen daraus wichtige Erkenntnisse über die Vorgänge im Inneren des Plasmas. Es ist wie ein kleines kosmisches Labor, in dem Energieflüsse simuliert und sogar gemessen werden können, die in Sternen eine Rolle spielen. Allerdings braucht man dazu zwei getrennte Plasmen. Am MBI werden sie mit Hilfe zweier verschiedener Höchstleistungslaser erzeugt, die innerhalb von Bruchteilen von milliardstel Sekunden gleichzeitig feuern eine Spezialität, die in Deutschland und Europa einmalig ist und die das MBI zu einem begehrten Kooperationspartner für solche Experimente macht.

Neben solch grundlegenden Fragen gibt es jedoch auch anwendungsnahe Aspekte. Denn der erzeugte Protonenpuls kann auch zur Strukturuntersuchung von ganz normaler Materie, Festkörper oder gar biologische Moleküle, genutzt werden. Zwar ist seine Pulsdauer weit kürzer als die Pulsdauer von Protonenstrahlen aus großen Teilchenbeschleunigern und Forschungsreaktoren, doch dafür ist der Strahl viel dichter. Außerdem braucht man keine dieser Megamaschinen, um den Protonenstrahl zu erzeugen. Die Laseranlage im MBI ist zwar beeindruckend groß, doch die kurzen Lichtpulse lassen sich im Prinzip auf zwei großen Labortischen erzeugen. So könnte es bei fortschreitender Miniaturisierung analog zum Tisch-Computer demnächst auch einen Tisch-Beschleuniger geben.

Ansprechpartner:

Dr. Matthias Schnürer
Tel.: 030 / 63 92 1315
schnuerer@mbi-berlin.de

Dr. Peter Nickles
Tel.: 030 / 6392 1310
nickles@mbi-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.fv-berlin.de
http://www.mbi-berlin.de

Weitere Berichte zu: Elektron Kilowatt Lichtleistung MBI Protonenstrahl Terawatt

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln
24.05.2018 | Technische Universität München

nachricht Gedruckte »in-situ« Perowskitsolarzellen – ressourcenschonend und lokal produzierbar
17.05.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics