Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserblitze erhellen den Mikrokosmos

06.07.2004


Mit ultrakurzen Lichtpulsen erzeugen Forscher am MBI exotische Materiezustände


Wir simulieren auf allerkleinstem Raum Verhältnisse, wie sie im Inneren einer Sonne herrschen. So umschreibt Dr. Matthias Schnürer vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie seine Arbeit. Diese Versuche sind Teil eines neuen Sonderforschungsbereiches, den die DFG kürzlich bewilligt hat. Der Sonderforschungsbereich/Transregio heißt Relativistische Laser-Plasma-Dynamik , seine Besonderheit ist, dass er über drei Universitäten (Düsseldorf, München, Jena) und zwei außeruniversitäre Institute (Max-Planck-Institut für Quantenoptik, Garching, und Max-Born-Institut Berlin) verteilt ist. Sprecher ist Professor Dr. Oswald Willi von der Heinrich-Heine-Universität Düsseldorf.

Warum relativistisch? Licht ist ein elektromagnetisches Wechselfeld, das geladene Teilchen, also auch Elektronen, beschleunigen kann. Unser Laserlicht ist so stark, dass Elektronen in diesem Feld selbst bis auf Lichtgeschwindigkeit beschleunigt werden und das, obwohl sie in einer Millionstel Sekunde hundert Millionen mal ihre Bewegungsrichtung umkehren, eine schwindelerregende Karussellfahrt. Eine solche Bewegung kann nur noch mit Einsteins Relativitätstheorie beschrieben werden, erläutert der Berliner Forscher Matthias Schnürer, daher nennen wir sie relativistisch. Selbst wenn Elektronen extrem leicht sind und daher leicht beschleunigt werden können, benötigt man für relativistische Bewegungen enorme Lichtleistungen. Zurzeit erzeugen die Wissenschaftler in dem Höchstleistungs-Laserlabor des MBI kurzfristig Lichtleistungen von vielen Milliarden Kilowatt. Zum Vergleich: Das Blitzlicht eines Fotoapparats setzt kurzfristig tausend Watt frei, also ein Kilowatt. Ein Kilo Sprengstoff (TNT) liegt bei einer Million Watt, das ist ein Megawatt. Ein Blitz bei einem Gewitter kommt immerhin schon auf eine Billion Watt (10 hoch zwölf oder ein Terawatt, eine Milliarde Kilowatt). Der Hochleistungslaser am MBI schafft derzeit 25 Terawatt, 100 Terawatt sind demnächst vorgesehen. Anders ausgedrückt: Die MBI-Forscher setzen kurzfristig mehr Lichtleistung frei als alle Kraftwerke der Welt im Dauerbetrieb erzeugen. Und sie können dennoch die Stromrechnung bezahlen. Denn diese immense Energiedichte dauert nur extrem kurz. Die Zeitskala ist dabei ebenso unvorstellbar klein wie die Leistungsskala groß: Unsere Pulse dauern etwa dreißig Femtosekunden, sagt Schnürer. Eine Femtosekunde ist der milliardste Teil einer Millionstelsekunde. Außerdem ist die Fläche sehr klein, die bestrahlt wird. Wir fokussieren den Strahl auf wenige Mikrometer Durchmesser, sagt Schnürer, also wenige tausendstel Millimeter.


In diesem Kosmos von wenigen Kubikmikrometern Raum entsteht dann ein Plasma mit extrem schnellen Teilchen. Schnürer: Wichtige Fragen für uns sind: Wie wird Energie in solch relativistischen Plasmen transportiert? Wie funktioniert überhaupt so ein Plasma? Um das herauszufinden, bedienen sich die Forscher eines Kniffs. Sie nutzen Eigenschaften des relativistischen Plasmas, um das Plasma selbst zu untersuchen. Der exotische Materiezustand führt nämlich dazu, dass nicht nur Elektronen, sondern auf Umwegen auch die viel schwereren Protonen beschleunigt werden ein Protonenstrahl entsteht. Diese positiv geladenen Bestandteile eines Atomkerns, die in einem lasererzeugten Plasma entstehen, werden durch ein zweites, benachbartes Plasma geschossen und darin abgelenkt. Wir untersuchen diese Ablenkung, berichtet Schnürer, und gewinnen daraus wichtige Erkenntnisse über die Vorgänge im Inneren des Plasmas. Es ist wie ein kleines kosmisches Labor, in dem Energieflüsse simuliert und sogar gemessen werden können, die in Sternen eine Rolle spielen. Allerdings braucht man dazu zwei getrennte Plasmen. Am MBI werden sie mit Hilfe zweier verschiedener Höchstleistungslaser erzeugt, die innerhalb von Bruchteilen von milliardstel Sekunden gleichzeitig feuern eine Spezialität, die in Deutschland und Europa einmalig ist und die das MBI zu einem begehrten Kooperationspartner für solche Experimente macht.

Neben solch grundlegenden Fragen gibt es jedoch auch anwendungsnahe Aspekte. Denn der erzeugte Protonenpuls kann auch zur Strukturuntersuchung von ganz normaler Materie, Festkörper oder gar biologische Moleküle, genutzt werden. Zwar ist seine Pulsdauer weit kürzer als die Pulsdauer von Protonenstrahlen aus großen Teilchenbeschleunigern und Forschungsreaktoren, doch dafür ist der Strahl viel dichter. Außerdem braucht man keine dieser Megamaschinen, um den Protonenstrahl zu erzeugen. Die Laseranlage im MBI ist zwar beeindruckend groß, doch die kurzen Lichtpulse lassen sich im Prinzip auf zwei großen Labortischen erzeugen. So könnte es bei fortschreitender Miniaturisierung analog zum Tisch-Computer demnächst auch einen Tisch-Beschleuniger geben.

Ansprechpartner:

Dr. Matthias Schnürer
Tel.: 030 / 63 92 1315
schnuerer@mbi-berlin.de

Dr. Peter Nickles
Tel.: 030 / 6392 1310
nickles@mbi-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.fv-berlin.de
http://www.mbi-berlin.de

Weitere Berichte zu: Elektron Kilowatt Lichtleistung MBI Protonenstrahl Terawatt

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Geräteschutzschalter erfüllt NEC Class 2
19.05.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Elektronikgehäuse für Anzeigeeinheiten
19.05.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften