Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Waschbrett mit überraschenden Eigenschaften

17.06.2004


Forscher des Paul-Drude-Instituts erzeugen viel versprechende Strukturen mit Manganarsenid


180 Nanometer dünne Manganarsenid-Schicht. Links Rippen (hell) aus ferromagnetischem Material und Rillen (dunkel) aus paramagnetischem Material. Rechts der magnetische Kontrast innerhalb der ferromagnetischen Streifen. Abb.: PDI



Erst sind es nur dunkle Flecken, die sich im Zeitraffer bewegen und verändern. Dann aber werden daraus langgestreckte Inseln, die sich zu Streifen verbinden. Am Ende blickt der Betrachter auf ein regelmäßiges Streifenmuster auf dem Computerbildschirm, dass sich wie von selbst gebildet hat. "Die hellen und dunklen Flächen entsprechen Bereichen mit unterschiedlichen strukturellen und magnetischen Eigenschaften", erläutert Dr. Lutz Däweritz vom Paul-Drude-Institut für Festkörperelektronik (PDI). Das Material, in dem diese Muster entstehen, heißt Manganarsenid (MnAs) und wurde als dünne Schicht auf Galliumarsenid (GaAs) abgeschieden. Wissenschaftlich korrekt ausgedrückt: eine Hybridstruktur aus einem Halbleiter (GaAs) und einem ferromagnetischen Material (MnAs), in dem sich ferromagnetische und paramagnetische Streifen abwechseln.

... mehr zu:
»Manganarsenid


Manganarsenid ist ein vielversprechendes Material für die Spin-Elektronik. Dabei geht es darum, die magnetischen Eigenschaften eines Elektrons (den "Spin") als Informationsträger zu nutzen. Als "intelligentes Material" ist es weiterhin für Anwendungen in der Sensorik interessant. Doch vor der Realisierung neuartiger Ideen und Bauelemente steht die Forschung an Grundlagen. Schließlich ist Manganarsenid in Form kristalliner Schichten hoher Perfektion ein recht junges Material, nur wenige Forschergruppen weltweit arbeiten damit.

Bei der systematischen materialwissenschaftlichen Forschung am PDI zur Eignung von bestimmten Materialien als Spininjektor spielte auch der Zufall eine gewisse Rolle, wie Dr. Däweritz schmunzelnd erzählt: Ein Doktorand hatte den Auftrag, Mangan in möglichst hoher Konzentration in Galliumarsenid einzubauen. Ziel dieser Arbeiten zu den so genannten verdünnten magnetischen Halbleitern war die Präparation von Schichten, die bei möglichst hohen Temperaturen (oberhalb Raumtemperatur) noch ferromagnetische Eigenschaften und gleichzeitig eine gute strukturelle Perfektion aufweisen. Der Doktorand wählte die Temperatur für die Mangan-Quelle viel zu hoch. "Als wir uns nachher an die Charakterisierung des Materials machten", sagt Däweritz, "erkannten wir an den Beugungsdiagrammen rasch, dass Manganarsenid entstanden war." Der Forscher weiter: "Die strukturelle Perfektion veranlasste uns, weitere detaillierte Untersuchungen vorzunehmen." So ließ sich das MnAs durch exakte Kontrolle der Wachstumsbedingungen in unterschiedlichen Orientierungen abscheiden. Die elektronenmikroskopische Untersuchung zeigte die Ausbildung einer scharfen Grenzfläche, was für potenzielle Anwendungen wichtig ist, und ermöglichte die Aufklärung des Anpassungsmechanismus zwischen den höchst unterschiedlichen Kristallgittern von Galliumarsenid und Manganarsenid.

Als besonders interessant und bedeutungsvoll stellte sich das ungewöhnliche Verhalten von Manganarsenid-Schichten beim Abkühlen nach dem Wachstum heraus. Die Abscheidung der hauchdünnen Schichten auf dem Halbleitersubstrat mittels Molekularstrahlepitaxie durch gleichzeitiges Aufdampfen von Mangan und Arsen geschieht bei etwa 250 Grad Celsius. Dabei entsteht eine hexagonale Struktur. Kühlt man die Probe ab, gibt es bei 125 Grad einen ersten Phasenübergang, es entsteht eine orthorhombische Struktur. Von entscheidender Bedeutung ist jedoch der zweite Phasenübergang, der bei etwa 40 Grad zur Ausbildung einer wiederum hexagonalen Struktur führt. Bei diesem Phasenübergang wird die Schicht ferromagnetisch. Die Streifen sind die Folge einer diskontinuierlichen Ausdehnung des kristallinen Materials in einer bevorzugten Richtung während des Phasenübergangs. Die Koexistenz der orthorhombischen und der hexagonalen Phase über einen ausgedehnten Temperaturbereich führt zu einem energetisch günstigen Zustand. Wieso ausgerechnet eine Art Nano-Waschbrett aus Manganarsenid entsteht, mit Rippen aus ferromagnetische und Rillen aus paramagnetischem Material, konnte durch eine Vielzahl von Untersuchungen verstanden werden, ohne dass dies bis ins Letzte aufgeklärt ist. Aber es ist spannend genug, um das Interesse der Forscher wach zu halten. "Mit der Technik der Lithografie versucht man, Muster zu erzeugen", erläutert Däweritz, " und hier macht es die Natur selbst". Mit überraschend perfekten Übergängen, fügt er hinzu.

Auch weitergehende Zielstellungen werden in Angriff genommen. PDI-Forscher untersuchen weitere Verbindungen und Legierungen, die auch bei Temperaturen oberhalb 40 Grad Celsius ferromagnetisch bleiben. Und schließlich werden die Streifen, die sich selbst organisieren, auch unter anderen Gesichtspunkten betrachtet. "Wir könnten uns Anwendungen vorstellen" sagt Däweritz, "bei denen die Streifen stören, weil man eine homogene Schicht haben will". Also untersuchen die Forscher am PDI auch, unter welchen Bedingungen nicht mehr die Streifenstruktur, sondern vielmehr die homogene Schicht stabil ist.

Weitere Informationen: Dr. Lutz Däweritz, Tel.: 030-20377-359, Mail: daweritz@pdi-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.fv-berlin.de/zeitung/verbund58.pdf
http://www.pdi-berlin.de

Weitere Berichte zu: Manganarsenid

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht IT-Kühlung: So schaffen Kleinbetriebe den Sprung in die IT-Profiliga
23.09.2016 | Rittal GmbH & Co. KG

nachricht Plug & Play: Drei auf einen Streich
29.09.2016 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie