Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Waschbrett mit überraschenden Eigenschaften

17.06.2004


Forscher des Paul-Drude-Instituts erzeugen viel versprechende Strukturen mit Manganarsenid


180 Nanometer dünne Manganarsenid-Schicht. Links Rippen (hell) aus ferromagnetischem Material und Rillen (dunkel) aus paramagnetischem Material. Rechts der magnetische Kontrast innerhalb der ferromagnetischen Streifen. Abb.: PDI



Erst sind es nur dunkle Flecken, die sich im Zeitraffer bewegen und verändern. Dann aber werden daraus langgestreckte Inseln, die sich zu Streifen verbinden. Am Ende blickt der Betrachter auf ein regelmäßiges Streifenmuster auf dem Computerbildschirm, dass sich wie von selbst gebildet hat. "Die hellen und dunklen Flächen entsprechen Bereichen mit unterschiedlichen strukturellen und magnetischen Eigenschaften", erläutert Dr. Lutz Däweritz vom Paul-Drude-Institut für Festkörperelektronik (PDI). Das Material, in dem diese Muster entstehen, heißt Manganarsenid (MnAs) und wurde als dünne Schicht auf Galliumarsenid (GaAs) abgeschieden. Wissenschaftlich korrekt ausgedrückt: eine Hybridstruktur aus einem Halbleiter (GaAs) und einem ferromagnetischen Material (MnAs), in dem sich ferromagnetische und paramagnetische Streifen abwechseln.

... mehr zu:
»Manganarsenid


Manganarsenid ist ein vielversprechendes Material für die Spin-Elektronik. Dabei geht es darum, die magnetischen Eigenschaften eines Elektrons (den "Spin") als Informationsträger zu nutzen. Als "intelligentes Material" ist es weiterhin für Anwendungen in der Sensorik interessant. Doch vor der Realisierung neuartiger Ideen und Bauelemente steht die Forschung an Grundlagen. Schließlich ist Manganarsenid in Form kristalliner Schichten hoher Perfektion ein recht junges Material, nur wenige Forschergruppen weltweit arbeiten damit.

Bei der systematischen materialwissenschaftlichen Forschung am PDI zur Eignung von bestimmten Materialien als Spininjektor spielte auch der Zufall eine gewisse Rolle, wie Dr. Däweritz schmunzelnd erzählt: Ein Doktorand hatte den Auftrag, Mangan in möglichst hoher Konzentration in Galliumarsenid einzubauen. Ziel dieser Arbeiten zu den so genannten verdünnten magnetischen Halbleitern war die Präparation von Schichten, die bei möglichst hohen Temperaturen (oberhalb Raumtemperatur) noch ferromagnetische Eigenschaften und gleichzeitig eine gute strukturelle Perfektion aufweisen. Der Doktorand wählte die Temperatur für die Mangan-Quelle viel zu hoch. "Als wir uns nachher an die Charakterisierung des Materials machten", sagt Däweritz, "erkannten wir an den Beugungsdiagrammen rasch, dass Manganarsenid entstanden war." Der Forscher weiter: "Die strukturelle Perfektion veranlasste uns, weitere detaillierte Untersuchungen vorzunehmen." So ließ sich das MnAs durch exakte Kontrolle der Wachstumsbedingungen in unterschiedlichen Orientierungen abscheiden. Die elektronenmikroskopische Untersuchung zeigte die Ausbildung einer scharfen Grenzfläche, was für potenzielle Anwendungen wichtig ist, und ermöglichte die Aufklärung des Anpassungsmechanismus zwischen den höchst unterschiedlichen Kristallgittern von Galliumarsenid und Manganarsenid.

Als besonders interessant und bedeutungsvoll stellte sich das ungewöhnliche Verhalten von Manganarsenid-Schichten beim Abkühlen nach dem Wachstum heraus. Die Abscheidung der hauchdünnen Schichten auf dem Halbleitersubstrat mittels Molekularstrahlepitaxie durch gleichzeitiges Aufdampfen von Mangan und Arsen geschieht bei etwa 250 Grad Celsius. Dabei entsteht eine hexagonale Struktur. Kühlt man die Probe ab, gibt es bei 125 Grad einen ersten Phasenübergang, es entsteht eine orthorhombische Struktur. Von entscheidender Bedeutung ist jedoch der zweite Phasenübergang, der bei etwa 40 Grad zur Ausbildung einer wiederum hexagonalen Struktur führt. Bei diesem Phasenübergang wird die Schicht ferromagnetisch. Die Streifen sind die Folge einer diskontinuierlichen Ausdehnung des kristallinen Materials in einer bevorzugten Richtung während des Phasenübergangs. Die Koexistenz der orthorhombischen und der hexagonalen Phase über einen ausgedehnten Temperaturbereich führt zu einem energetisch günstigen Zustand. Wieso ausgerechnet eine Art Nano-Waschbrett aus Manganarsenid entsteht, mit Rippen aus ferromagnetische und Rillen aus paramagnetischem Material, konnte durch eine Vielzahl von Untersuchungen verstanden werden, ohne dass dies bis ins Letzte aufgeklärt ist. Aber es ist spannend genug, um das Interesse der Forscher wach zu halten. "Mit der Technik der Lithografie versucht man, Muster zu erzeugen", erläutert Däweritz, " und hier macht es die Natur selbst". Mit überraschend perfekten Übergängen, fügt er hinzu.

Auch weitergehende Zielstellungen werden in Angriff genommen. PDI-Forscher untersuchen weitere Verbindungen und Legierungen, die auch bei Temperaturen oberhalb 40 Grad Celsius ferromagnetisch bleiben. Und schließlich werden die Streifen, die sich selbst organisieren, auch unter anderen Gesichtspunkten betrachtet. "Wir könnten uns Anwendungen vorstellen" sagt Däweritz, "bei denen die Streifen stören, weil man eine homogene Schicht haben will". Also untersuchen die Forscher am PDI auch, unter welchen Bedingungen nicht mehr die Streifenstruktur, sondern vielmehr die homogene Schicht stabil ist.

Weitere Informationen: Dr. Lutz Däweritz, Tel.: 030-20377-359, Mail: daweritz@pdi-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.fv-berlin.de/zeitung/verbund58.pdf
http://www.pdi-berlin.de

Weitere Berichte zu: Manganarsenid

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise