Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Waschbrett mit überraschenden Eigenschaften

17.06.2004


Forscher des Paul-Drude-Instituts erzeugen viel versprechende Strukturen mit Manganarsenid


180 Nanometer dünne Manganarsenid-Schicht. Links Rippen (hell) aus ferromagnetischem Material und Rillen (dunkel) aus paramagnetischem Material. Rechts der magnetische Kontrast innerhalb der ferromagnetischen Streifen. Abb.: PDI



Erst sind es nur dunkle Flecken, die sich im Zeitraffer bewegen und verändern. Dann aber werden daraus langgestreckte Inseln, die sich zu Streifen verbinden. Am Ende blickt der Betrachter auf ein regelmäßiges Streifenmuster auf dem Computerbildschirm, dass sich wie von selbst gebildet hat. "Die hellen und dunklen Flächen entsprechen Bereichen mit unterschiedlichen strukturellen und magnetischen Eigenschaften", erläutert Dr. Lutz Däweritz vom Paul-Drude-Institut für Festkörperelektronik (PDI). Das Material, in dem diese Muster entstehen, heißt Manganarsenid (MnAs) und wurde als dünne Schicht auf Galliumarsenid (GaAs) abgeschieden. Wissenschaftlich korrekt ausgedrückt: eine Hybridstruktur aus einem Halbleiter (GaAs) und einem ferromagnetischen Material (MnAs), in dem sich ferromagnetische und paramagnetische Streifen abwechseln.

... mehr zu:
»Manganarsenid


Manganarsenid ist ein vielversprechendes Material für die Spin-Elektronik. Dabei geht es darum, die magnetischen Eigenschaften eines Elektrons (den "Spin") als Informationsträger zu nutzen. Als "intelligentes Material" ist es weiterhin für Anwendungen in der Sensorik interessant. Doch vor der Realisierung neuartiger Ideen und Bauelemente steht die Forschung an Grundlagen. Schließlich ist Manganarsenid in Form kristalliner Schichten hoher Perfektion ein recht junges Material, nur wenige Forschergruppen weltweit arbeiten damit.

Bei der systematischen materialwissenschaftlichen Forschung am PDI zur Eignung von bestimmten Materialien als Spininjektor spielte auch der Zufall eine gewisse Rolle, wie Dr. Däweritz schmunzelnd erzählt: Ein Doktorand hatte den Auftrag, Mangan in möglichst hoher Konzentration in Galliumarsenid einzubauen. Ziel dieser Arbeiten zu den so genannten verdünnten magnetischen Halbleitern war die Präparation von Schichten, die bei möglichst hohen Temperaturen (oberhalb Raumtemperatur) noch ferromagnetische Eigenschaften und gleichzeitig eine gute strukturelle Perfektion aufweisen. Der Doktorand wählte die Temperatur für die Mangan-Quelle viel zu hoch. "Als wir uns nachher an die Charakterisierung des Materials machten", sagt Däweritz, "erkannten wir an den Beugungsdiagrammen rasch, dass Manganarsenid entstanden war." Der Forscher weiter: "Die strukturelle Perfektion veranlasste uns, weitere detaillierte Untersuchungen vorzunehmen." So ließ sich das MnAs durch exakte Kontrolle der Wachstumsbedingungen in unterschiedlichen Orientierungen abscheiden. Die elektronenmikroskopische Untersuchung zeigte die Ausbildung einer scharfen Grenzfläche, was für potenzielle Anwendungen wichtig ist, und ermöglichte die Aufklärung des Anpassungsmechanismus zwischen den höchst unterschiedlichen Kristallgittern von Galliumarsenid und Manganarsenid.

Als besonders interessant und bedeutungsvoll stellte sich das ungewöhnliche Verhalten von Manganarsenid-Schichten beim Abkühlen nach dem Wachstum heraus. Die Abscheidung der hauchdünnen Schichten auf dem Halbleitersubstrat mittels Molekularstrahlepitaxie durch gleichzeitiges Aufdampfen von Mangan und Arsen geschieht bei etwa 250 Grad Celsius. Dabei entsteht eine hexagonale Struktur. Kühlt man die Probe ab, gibt es bei 125 Grad einen ersten Phasenübergang, es entsteht eine orthorhombische Struktur. Von entscheidender Bedeutung ist jedoch der zweite Phasenübergang, der bei etwa 40 Grad zur Ausbildung einer wiederum hexagonalen Struktur führt. Bei diesem Phasenübergang wird die Schicht ferromagnetisch. Die Streifen sind die Folge einer diskontinuierlichen Ausdehnung des kristallinen Materials in einer bevorzugten Richtung während des Phasenübergangs. Die Koexistenz der orthorhombischen und der hexagonalen Phase über einen ausgedehnten Temperaturbereich führt zu einem energetisch günstigen Zustand. Wieso ausgerechnet eine Art Nano-Waschbrett aus Manganarsenid entsteht, mit Rippen aus ferromagnetische und Rillen aus paramagnetischem Material, konnte durch eine Vielzahl von Untersuchungen verstanden werden, ohne dass dies bis ins Letzte aufgeklärt ist. Aber es ist spannend genug, um das Interesse der Forscher wach zu halten. "Mit der Technik der Lithografie versucht man, Muster zu erzeugen", erläutert Däweritz, " und hier macht es die Natur selbst". Mit überraschend perfekten Übergängen, fügt er hinzu.

Auch weitergehende Zielstellungen werden in Angriff genommen. PDI-Forscher untersuchen weitere Verbindungen und Legierungen, die auch bei Temperaturen oberhalb 40 Grad Celsius ferromagnetisch bleiben. Und schließlich werden die Streifen, die sich selbst organisieren, auch unter anderen Gesichtspunkten betrachtet. "Wir könnten uns Anwendungen vorstellen" sagt Däweritz, "bei denen die Streifen stören, weil man eine homogene Schicht haben will". Also untersuchen die Forscher am PDI auch, unter welchen Bedingungen nicht mehr die Streifenstruktur, sondern vielmehr die homogene Schicht stabil ist.

Weitere Informationen: Dr. Lutz Däweritz, Tel.: 030-20377-359, Mail: daweritz@pdi-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.fv-berlin.de/zeitung/verbund58.pdf
http://www.pdi-berlin.de

Weitere Berichte zu: Manganarsenid

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Kompakte Rangierfelder für RJ45-Module
25.09.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Sicherungsklemmen für unterschiedliche Einsatzgebiete
18.09.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops