Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Bauteile für Fusionsanlage Wendelstein 7-X fertiggestellt

27.02.2004


Die ersten großen Bauteile für das Fusionsexperiment Wendelstein 7-X sind im Teilinstitut Greifswald des Max-Planck-Instituts für Plasmaphysik (IPP) angekommen: eine Magnetspule, der erste Teil des Plasmagefäßes, Gefäßstutzen und ein Mikrowellensender für die Plasmaheizung.

... mehr zu:
»7-X »Spule »Wendelstein

Ziel der Fusionsforschung ist es, die Energieproduktion der Sonne auf der Erde nachzuvollziehen und aus der Verschmelzung von Atomkernen Energie zu gewinnen. Um das Fusionsfeuer zu zünden, muss in einem späteren Kraftwerk der Brennstoff, ein Wasserstoffplasma, in Magnetfeldern eingeschlossen und auf Temperaturen über 100 Millionen Grad aufgeheizt werden. Wendelstein 7-X - die nach ihrer Fertigstellung weltweit größte Fusionsanlage vom Typ Stellarator - hat die Aufgabe, die Kraftwerkseignung dieses Bautyps zu untersuchen. Mit bis zu 30 Minuten langen Entladungen soll sie die wesentliche Eigenschaft der Stellaratoren vorführen, die Fähigkeit zum Dauerbetrieb.

Magnetspulen


In das IPP ausgeliefert wurde die erste der insgesamt 50 nicht-ebenen Magnetspulen - das Kernstück der Anlage. Ihre bizarren Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen: Sie sollen einen besonders stabilen und wärmeisolierenden magnetischen Käfig für das Plasma erzeugen. Wegen der angestrebten langen Pulszeiten von 30 Minuten werden - anders als bei bisherigen Anlagen - zum Bau der Magnete supraleitende Stromleiter benutzt. Auf tiefe Temperaturen abgekühlt, verbrauchen sie nach dem Einschalten kaum Energie. Speziell für Wendelstein 7-X entwickelte man ein flexibles supraleitendes Kabel aus Niob-Titan mit einer Aluminiumhülle. Es kann im weichen Ausgangszustand in Formen eingelegt und dann durch Erwärmen ausgehärtet werden. Im Betrieb wird der Leiter mit flüssigem Helium, das im Leiterinneren fließt, auf Supraleitungstemperatur von etwa 4 Kelvin bis nahe an den absoluten Nullpunkt abgekühlt. Zwei Drittel der bestellten 60 Kilometer Kabellänge hat der Hersteller, das Konsortium European Advanced Superconductors/Europa Metalli Superconductors S.p.A., mittlerweile produziert.

Aus diesem Leiter entstehen im Auftrag des deutsch-italienischen Konsortiums Babcock Noell Nuclear/Ansaldo die Spulen bei ABB in Augsburg und in Genua: Drei der rund 3,5 Meter hohen und 2,5 Metern breiten Spulen sind fertig gestellt; mehr als die Hälfte aller Spulen ist in Arbeit: Um die Sollform innerhalb weniger Millimeter einzuhalten, müssen die Leiterwindungen sehr präzise in ihre Wickelform gepresst werden. Zur elektrischen Isolation wird der Leiter wie auch das gesamte Wickelpaket mit Bandagen aus Glasfaser umwunden und zur Versteifung mit Epoxidharz imprägniert. Zusätzliche Verstärkung geben massive Stahlgehäuse - in Halbschalen gefertigt von der schwedischen Gießerei Österby Gjuteri AB - in die die Wickelpakete bei der Babcock Noell Magnettechnik GmbH in Zeitz eingeschweißt werden. Eine Füllung aus Quarzsand und Epoxidharz im Zwischenraum zwischen Spulenkern und Stahlhülle sorgt für eine gleichmäßige Kraftübertragung vom Wickelpaket auf das Gehäuse. Dabei ist zu berücksichtigen, dass sich später beim Abkühlen auf Tieftemperaturen Hülle, Füllung und Wickelpaket verschieden stark zusammenziehen. Um dies auszugleichen, wird das Gehäuse vor dem Imprägnieren aufgeheizt. Das sich ausdehnende Gehäuse schrumpft beim Abkühlen wieder; die Temperaturdifferenz ist so berechnet, dass die Spule genau bei ihrer tiefen Betriebstemperatur spannungsfrei ist.

Die fertige Spule wird anschließend mit Kühlrohren und -blechen versehen; Füße sowie Halter zur Befestigung der rund sechs Tonnen schweren Bauteile am Stützgerüst werden angebracht. Zur Prüfung der Betriebseigenschaften werden alle Spulen anschließend nach Saclay in Frankreich zu einer Testanlage der CEA transportiert und bei Tieftemperatur geprüft. Die erste Spule ist hier im Juni 2003 angekommen; zwei Stellarator-Spulen haben die Tests seither erfolgreich durchlaufen.

Ebene Spulen

Dem Kranz der 50 nicht-ebenen Stellarator-Spulen wird ein zweiter Satz von 20 ebenen Spulen überlagert, um das Magnetfeld verändern zu können und die Flexibilität des Experiments zu erhöhen. Beim Hersteller - Tesla in Großbritannien - sind inzwischen 16 Spulen gewickelt und zwei komplett fertig gestellt. Auch die erste ebene Spule hat ihre Funktionsprüfung in Saclay bereits bestanden.

Das Plasmagefäß

Die ersten zwei von insgesamt 20 Sektoren des Plasmagefäßes wurden Ende letzten Jahres vom Hersteller - der Deggendorfer Werft und Eisenbau GmbH - nach Greifswald geliefert. Das Plasmagefäß ist ein Teil des so genannten Kryostaten, des wärmeisolierenden Gefäßes sowohl für die tiefkalten Magnetspulen als auch für das heiße Fusionsplasma. Die annähernd ringförmige Plasmakammer, die später das heiße Plasma enthalten wird, bildet mit einem Durchmesser von rund 8 Metern die Innenwand des Kryostaten. Sie ist umschlossen von einer Außenhülle von 16 Metern Durchmesser. In dem luftleeren Raum zwischen Plasma- und Außengefäß wird das tiefkalte Spulensystem untergebracht. Eine Kälteanlage stellt später 5000 Watt Heliumkälte bereit, um die Magnete und ihre Abstützung, d.h. insgesamt 425 Tonnen Material, auf Supraleitungstemperatur zu kühlen.

Das innerhalb der Spulen liegende Plasmagefäß ist in seiner Form dem verwundenen Plasmaschlauch angepasst. Die komplexe Form bei verlangter hoher Maßhaltigkeit - stellenweise sind die Toleranzen nicht größer als drei Millimeter - macht die Herstellung zu einer anspruchsvollen Aufgabe. Um die bizarre Form in Stahl nachzubilden, wird das ringförmige Gefäß aus 200 einzelnen Ringen aufgebaut. Jeder Ring wird aus mehreren fingerdicken und 15 Zentimeter breiten Stahlblechstreifen zusammengesetzt, die vielfach geknickt die geschwungenen Konturen nachformen. Ultrahochvakuumdicht verschweißt sind so mittlerweile sieben der 20 Sektoren fertiggestellt.

Mit scharfem Wasserstrahl werden anschließend in die Gefäßteile insgesamt 299 Löcher geschnitten, durch die das Plasma später beobachtet und geheizt werden soll. Ebenso viele Stutzen, die gut wärmeisoliert zwischen den Spulen hindurchgeführt werden, verbinden diese Öffnungen mit der Außenwand des Kryostaten. Da sich beim Abkühlen auf Supraleitungstemperatur alles zusammenzieht, werden die Stutzen für diesen Längenausgleich mit beweglichen Bälgen ausgerüstet. 60 Stutzen - gefertigt von der Schweizer Firma Romabau - sind versandfertig, zwei bereits ausgeliefert.

Mikrowellenheizung für das Plasma

Das Plasma von Wendelstein 7-X soll im Dauerbetrieb durch zehn Mikrowellensender mit je einem Megawatt Leistung bei einer Frequenz von 140 Gigahertz geheizt werden. Solche Senderöhren, so genannte Gyrotrons, wurden bisher nur für Heizpulse von wenigen Sekunden und Leistungen von einigen hundert Kilowatt gebaut. Für die nötige Entwicklungsarbeit und den Aufbau des Mikrowellen-Heizsystems für Wendelstein 7-X ist das Forschungszentrum Karlsruhe verantwortlich, das die Beiträge anderer Laboratorien und der Industrie koordiniert. Der Prototyp und erste der zehn Mikrowellen-Generatoren - hergestellt von der französischen Firma Thales Electron Devices - wurde bereits Ende 2003 erfolgreich in Greifswald in Betrieb genommen. Mit einer Ausgangsleistung von einem Megawatt ist er der stärkste für mehrere Minuten laufende Mikrowellensender der Welt.

Er wird nun dazu benutzt, das zugehörige Übertragungssystem zu testen. Dessen Entwicklung hat das Institut für Plasmaforschung der Universität Stuttgart übernommen. Die Mikrowellen werden über wassergekühlte Metallspiegel vom Sender in das Plasma gelenkt. Die anspruchsvollen Bauteile müssen die Mikrowellen aus ihren zehn Einzelstrahlen zusammenfügen, sie trotz der hohen Leistung von zehn Megawatt zerstörungsfrei und mit möglichst geringen Übertragungsverlusten, außerdem im richtigen Polarisationszustand und exakt gebündelt an der jeweils gewünschten Stelle in das Plasma schicken. Von den insgesamt vorgesehenen 140 Spiegeln sind 100 installiert. Bis auf die Teile im Plasmagefäß, die erst nach dem Experimentaufbau montiert werden können, ist das Übertragungssystem damit fertig aufgebaut. In den jetzt laufenden Hochleistungstests werden alle Komponenten in ihrem Zusammenwirken geprüft - neben dem Übertragungssystem also auch Kühlung, Hochspannungsversorgung, Messtechnik und Datenerfassung. Parallel wird schon das zweite, von der US-Firma Communication and Power Industries entwickelte Gyrotron aufgebaut. Erste Tests sind für April 2004 vorgesehen.

Montagevorbereitung

Zurzeit laufen in Greifswald Tests und Vorbereitungsarbeiten für die Montage. Forschung und Ausbildung an kleineren Apparaturen ergänzen die Arbeiten für Wendelstein 7-X. Der für 2010 geplante Betriebsbeginn hängt wesentlich von der termingerechten Fertigstellung der Bauteile durch die zuliefernde Industrie ab. "Bei komplexen Anlagen wie Wendelstein 7-X ist bereits die industrielle Fertigung und der Aufbau ein Experiment für sich, bei dem in zahlreichen Sparten Neuland betreten wird", erläutert Dr. Manfred Wanner, der als Leiter der Abteilung "Basismaschine" die Fertigung der Bauteile überwacht: "Die mit Wendelstein 7-X gewonnenen Erfahrungen werden aber auch für den internationalen Testreaktor ITER von großem Nutzen sein".

Isabella Milch | Max-Planck-Institut für Plasmaph
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Berichte zu: 7-X Spule Wendelstein

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht SmartMeter analysieren mit Algorithmen den Stromverbrauch
01.12.2016 | Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS

nachricht Energiehybrid: Batterie trifft Superkondensator
01.12.2016 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie