Ferdinand-Braun-Institut entwickelt neue Laserklasse

Der neue hochbrillante Diodenlaser aus dem Ferdinand-Braun-Institut. Foto: FBH/schurian.com

Hochbrillante Lichtquellen für die Messtechnik und die Materialanalyse aus Adlershof

Das Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) in Berlin-Adlershof hat einen weltraumtauglichen Diodenlaser entwickelt, der zehnmal mehr Ausgangsleistung hat als bisherige Diodenlaser mit vergleichbaren spektralen Eigenschaften. Der Laser wird auf der Messe Laser-Optik-Berlin (LOB) Anfang März vorgestellt.

Die Neuentwicklung schließt eine wichtige Lücke. Bisher gab es im Wesentlichen zwei Klassen von Diodenlasern. Die einen sind hochbrillant – das heißt, sie strahlen in einem genau definierbaren Wellenlängenbereich -, haben aber eine geringe Ausgangsleistung von nur einigen tausendstel Watt (mW). Die anderen haben weitaus mehr „Power“ (einige Watt), besitzen jedoch eine weit geringere Strahlqualität und spektrale Breite. Der FBH-Diodenlaser, ein so genannter Distributed-Feedback-Laser, erreicht nun eine Leistung von mehr als 0,3 Watt und weist eine enorme Brillanz auf. Letzteres ist entscheidend für Anwendungen in der Telekommunikation, aber auch in der Materialanalyse. Zum Vergleich: Laser in CD-Playern haben eine Leistung von 0,002 bis 0,005 Watt, also einige mW; ein CD-Brenner bringt es auf rund 50 mW.

Anregung für Atomuhren

Für die Raumfahrt interessant ist ein weiterer Aspekt. Denn mit kompakten, robusten und zuverlässigen Diodenlasern können Atome wie Cäsium und Rubidium angeregt werden. Das wird für die Atomuhren zwar schon lange genutzt, aber bisher waren die Anregungslaser sehr aufwendig in der Herstellung und mindestens faustgroß. Die Entwicklung aus dem FBH ist nur ungefähr daumengroß; der entscheidende Laserchip sogar kleiner als ein Streichholzkopf: 1,5 Millimeter lang, 0,1 Millimeter hoch und 0,3 bis 0,4 Millimeter breit. In zukünftigen Satelliten gestützten Positionssystemen (GPS) wird man solche Atomuhren einsetzen, deren Atome durch Diodenlaser angeregt werden.

Winzige Furchen

Die Ausgangsleistung und die Brillanz konnten erhöht werden, weil es im FBH gelang, periodische Strukturen mit zirka 200 Nanometer Länge, so genannte Bragg-Gitter, in Hochleistungsdiodenlaser zu integrieren. Das kann man sich vorstellen wie Ackerfurchen. Unvorstellbar kleine Furchen freilich: 200 Nanometer sind 0,0002 Millimeter.
Die neue Technologie beruht auf dem exakt definierten kristallinen Schichtwachstum unterschiedlicher Kristallmaterialien im Nanometer-Bereich. In diese Schichten werden die „Furchen“, das Bragg-Gitter, geätzt und in einem zweiten Schritt überwachsen – so als ob eine Schneedecke die Furchen zudeckt. Genau dieser zweite Schritt konnte durch die neuen Schichtstrukturen so gut ausgeführt werden, dass die hohen Leistungen auch mit großer Zuverlässigkeit möglich sind.

Ansprechpartner: Dr. Götz Erbert, Tel.: 030 / 6392-2656; Mail: erbert@fbh-berlin.de

Das Ferdinand-Braun-Institut für Höchstfrequenztechnik ist eines der weltweit führenden Institute in der anwendungsorientierten und industrienahen Forschung auf den Gebieten Mikrowellentechnik und Optoelektronik. Das FBH entwickelt und fertigt unter anderem Hochleistungs-Halbleiterlaserdioden. Es realisiert Bauelemente und Schaltungen auf der Basis von so genannten III-V-Verbindungshalbleitern für Anwendungen in der Mobilkommunikation, Sensorik und Lasertechnologie. Das Institut beschäftigt 140 Mitarbeiter und hat einen Etat von mehr als dreizehn Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. (FVB) und ist, wie alle FVB-Institute, Bestandteil der Leibniz-Gemeinschaft.

Der Forschungsverbund Berlin e.V. ist Träger von acht natur-, lebens- und umweltwissenschaftlichen Forschungsinstituten in Berlin, die alle wissenschaftlich eigenständig sind, aber im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen und eine gemeinsame Verwaltung haben.

Terminhinweis: Die Messe und der Kongress „Laser-Optik-Berlin“ finden am 3. und 4. März statt. Veranstaltungsort ist das Studio Berlin Adlershof (Studio G) in der Agastraße 20c. Öffnungszeiten: 9 bis 18 Uhr (3. März) und 9 bis 17 Uhr (4. März).

Media Contact

Josef Zens Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer