Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hybride aus Kohlenstoff-Nanoröhrchen und Ferrocen-Molekülen als Basis für neuartige Solarzellen?

11.09.2003


Unsere herkömmliche Elektronik wird in nicht allzu ferner Zukunft abgelöst werden, denn die Silizium-Halbleiter-Technik stößt an ihre Grenzen, was Miniaturisierung, Schnelligkeit und Effizienz angeht. Als eine der möglichen Alternativen profilieren sich derzeit Kohlenstoff-Nanoröhrchen. Dank ihrer interessanten elektrischen Eigenschaften eignet sich diese spezielle Kohlenstoff-Modifikation sowohl für elektronische Bauelemente als auch für Nanodrähte.


Einige Bauelemente, wie Transistoren, konnten bereits mit Nanoröhrchen nachempfunden werden. Durch gezielte Funktionalisierung der Nanoröhrchen, das heißt Anknüpfen von chemischen Atomgruppierungen, könnte das Repertoire an realisierbaren Bauelementen erweitert werden. So schuf ein Forscherteam um Dirk M. Guldi (University of Notre Dame, USA), Francesco Paolucci (Universität Bologna, Italien) und Maurizio Prato (Universität Triest, Italien) nun einen möglichen Ausgangspunkt für Solarzellen auf der Basis von Kohlenstoff-Nanoröhrchen.

Kohlenstoff-Nanoröhrchen kann man sich als eine aufgrollte Graphit-Lage vorstellen: relativ lange, sehr dünne Hohlzylinder, deren Wand aus sechseckigen Waben aus Kohlenstoffatomen aufgebaut ist. Über einen molekularen "Anker" und eine "Ankerkette" knüpften die Forscher Ferrocen-Einheiten an die Wände der Röhrchen. Dabei kommt es zu einem Ringschluss zwischen Atomen des "Ankers" und zwei Kohlenstoffatomen des Nanoröhrchens - daher nennt man diese Reaktion eine "Cycloaddition".


Bei dem verankerten Baustein, Ferrocen, handelt es sich um einen so genannten Sandwich-Komplex: Zwei flache Kohlenstoff-Fünfringe als "Brotscheiben" nehmen als "Belag" ein Eisenatom in ihre Mitte. Etwa einen Sandwich pro hundert Nanoröhrchen-Kohlenstoffatome bauten die Forscher an. Das Besondere dieser Eisen-Sandwiches: Sie sind Elektronen-Donoren, das heißt, sie haben mehr Elektronen zur Verfügung, als ihnen eigentlich lieb ist. Relativ leicht kann sich daher eines Ihrer Elektronen auf Wanderschaft begeben. Werden die Kohlenstoff-Nanoröhrchen mit Licht im sichtbaren Wellenlängenbereich bestrahlt, fungieren sie als Elektronen-Akzeptoren und nehmen diese freigesetzten Elektronen auf.

"Diese Ladungstrennung ist langlebig genug, um die Elektronen ableiten und nutzen zu können," sagt Guldi. "Damit sind die ersten Voraussetzungen für die Entwicklung von Solarzellen auf der Basis von modifizierten Kohlenstoff-Nanoröhrchen erfüllt."

Kontakt:

Dr. D. M. Guldi
Radiation Laboratory
University of Notre Dame
Notre Dame, Indiana 46556, USA
Fax: (+1) 574-631-8068
E-mail: guldi.1@nd.edu

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201-606 321
Fax: 06201-606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.org
http://www.nd.edu

Weitere Berichte zu: Elektron Kohlenstoff-Nanoröhrchen Nanoröhrchen Solarzelle

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie