Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Feststoffspeicher für Wasserstoff lässt sich in Minuten befüllen

13.06.2003


Wissenschaftler vom Institut für Nanotechnologie des Forschungszentrums Karlsruhe haben einen Metallhydridtank für Wasserstoff entwickelt, der sich statt in einer Stunde in wenigen Minuten befüllen lässt. Möglich wird dies mithilfe von Nanopartikeln, die als Katalysatoren wirken und die Reaktionszeiten bei der Aufnahme von Wasserstoff extrem beschleunigen.




Wasserstoff wird bislang meist unter extremen Bedingungen getankt und gelagert: entweder gasförmig in Drucktanks mit mehreren hundert bar Überdruck oder flüssig in speziellen Kühltanks bei Temperaturen von unter minus 253 Grad Celsius. Eine mögliche Alternative sind Festkörper aus so genannten Metallhydriden. Diese Materialien nehmen den Wasserstoff auf, halten ihn in ihrer atomaren Struktur fest und geben ihn bei Temperaturerhöhung wieder ab.



Da sie weder extreme Temperaturen noch hohe Drücke erfordern, sind Metallhydridtanks vergleichsweise unkompliziert zu handhaben. Solche Tanksysteme bieten sich daher für mobile Kleinanwendungen wie Laptops oder PDAs, aber auch für den Einsatz in Autos und Bussen an. Bislang hat sich die Technologie jedoch kaum durchgesetzt, da den Vorteilen eine ganze Reihe von Nachteilen gegenüberstehen.

Einer davon ist die noch zu geringe Speicherdichte: Die Natrium-Aluminium-Verbindung Natriumalanat (NaAlH4), derzeit eines der besten Speichermedien, kann lediglich 4,5 Prozent ihres Eigengewichts an Wasserstoff aufnehmen. Das bedeutet, dass beispielsweise rund 100 Kilogramm des Materials benötigt werden, um knapp 5 Kilogramm Wasserstoff zu speichern.

Diese Zahlen sind damit bereits in ähnlichen Größenordnungen wie bei Druck- und Flüssiggastanks. Wegen der geringen Dichte des Materials sind die Tanks jedoch voluminös und nehmen in Fahrzeugen zu viel Platz weg. Ein weiterer Nachteil von Metallhydridspeichern ist zudem die sehr langsame Aufnahme und Abgabe des Wasserstoffs im Material, so dass das Betanken viel Zeit erfordert. Um einen Tank mit Natriumalanat als Speichermedium zu 80 Prozent aufzuladen, musste bisher mit Ladezeiten von über einer Stunde gerechnet werden. Mit den von den Karlsruher Forschern entwickelten Nanopartikeln lässt sich diese Zeit jedoch auf rekordverdächtige 7 bis 8 Minuten verkürzen.

Diese Partikel bestehen aus einem Kern aus 13 Atomen des Metalls Titan, der von einer Hülle aus Lösungsmittelmolekülen umschlossen ist. Diese selbst unter leistungsstarken Elektronenmikroskopen unsichtbaren Kerne wirken als Katalysatoren und beschleunigen die chemische Reaktion, die beim Einbau des Wasserstoffs in die Natrium-Aluminium-Verbindung abläuft.

Hergestellt wird das leistungsfähigere Speichermaterial, indem eine geringe Menge der Nanopartikel mit dem Speichermaterial Natriumalanat vermischt und unter Luftausschluss sehr fein gemahlen wird. Dadurch entsteht eine innige Mischung der beiden Komponenten, ein so genanntes Nanokomposit.

Trotz des Erfolges: Für den Durchbruch in der Speichertechnik seien noch weitere technische Hürden zu nehmen, erläutert Projektleiter Maximilian Fichtner. Wichtigstes Ziel sei es, Speicherdichten von mehr als 6 Prozent zu erreichen. Dieser Wert wird als kritische Grenze angesehen, ab der Metallhydride für die Autoindustrie interessant sein könnten.

Zu den "Baustellen", wie es der Chemiker ausdrückt, gehöre auch das Problem, den Wasserstoff wieder aus dem Speichermaterial herauszulösen: Während beim Betanken durch die chemische Reaktion beim Einbau des Wasserstoffs in die Metallverbindung Wärme frei wird, sind zum Entladen der Tanks Temperaturen von um die hundert Grad Celsius nötig. Diese Wärmeenergie muss von außen zugeführt werden – idealerweise wird die Abwärme der Brennstoffzelle dazu genutzt.

Sollte es gelingen, all diese Schwierigkeiten zu überwinden, rechnet Fichtner damit, dass sich Hydridspeicher durchaus gegenüber Drucktanks und Flüssiggastanks durchsetzen könnten: "Wer einen tauglichen Feststoffspeicher entwickelt, der hat den großen Wurf gelandet."

Ulrich Dewald | Initiative Brennstoffzelle
Weitere Informationen:
http://www.initiative-brennstoffzelle.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics