RUB-Elektrotechnik: Einfaches System revolutioniert die Bildgebung

Bildgebende Verfahren, z. B. in der Medizin, beschränken sich bisher auf einen kleinen Bereich des elektromagnetischen Spektrums. Ihr Potenzial ist damit bei weitem noch nicht ausgereizt. Neue Informationen über abgebildete Objekte ermöglicht die so genannte Terahertz-Strahlung im Spektralbereich zwischen sichtbarem Licht und Radarfrequenzen. Ihr derzeitiger Nachteil: Sie benötigt sehr teure und aufwändige Lasersysteme. Auf der Suche nach einer kostengünstigen Strahlenquelle haben Elektrotechniker der Technischen Universität Braunschweig und der Ruhr-Universität Bochum ein System entwickelt, das mit kontinuierlicher Laserstrahlung arbeitet. Es findet in zwei Schuhkartons Platz, die Komponenten kosten wenige Tausend Euro. Für ihre Entwicklung erhielten sie heute in Goslar den Kaiser Friedrich-Forschungspreis 2003, der mit 15.000 Euro dotiert ist.

Erfolgreich im Experiment

Die Leistungsfähigkeit ihres Systems haben Prof. Dr. Martin Hofmann und Dipl.-Phys. Stefan Hoffmann (Werkstoffe in der Mikroelektronik, Fakultät für Elektrotechnik und Informationstechnik der RUB) sowie Prof. Dr. Martin Koch und Dipl.-Ing. Thomas Kleine-Ostmann (Institut für Hochfrequenztechnik, TU Braunschweig) bereits demonstriert: Sie richteten die gebündelte Terahertz-Strahlung auf den getrockneten Gewebeschnitt einer menschlichen Leber, die mit Tumoren durchsetzt ist. Der Strahl rasterte die Probe, die Strahlungssignale für jede einzelne Position wurden mit einem Terahertz-Detektor aufgezeichnet: Im Durchleuchtungsbild konnten die Forscher so die Lage der Tumore exakt bestimmen, da gesundes Gewebe die Strahlung anders abschwächt als das Tumorgewebe.

So arbeitet das System

Hauptbestandteil des Systems ist eine winzige Laserdiode, wie sie ähnlich in jedem Laserpointer oder CD-Player zu finden ist. Mit Hilfe einiger weiterer optischer Komponenten strahlt die Laserdiode infrarotes Licht auf zwei Frequenzen zugleich ab. Die Differenz der beiden Frequenzen, die so genannte Schwebungsfrequenz, liegt im Terahertz-Bereich. Mit einem elektromagnetischen Verfahren, der „Photomischung“, erzeugt das System aus dem Schwebungssignal die entsprechende Terahertz-Strahlung.

Noch keine Massenanwendung

Die Technologie birgt ein enormes Potenzial in der medizinischen Diagnostik und Bioanalytik, aber auch in der Sicherheitstechnik, z. B. am Flughafen, oder in der kosmetischen Forschung. Analysesysteme, die bereits mit der Strahlung im Terahertz-Bereich arbeiten, kosten jedoch etwa 250.000 Euro. Sie erzeugen die Strahlung mit Hilfe extrem kurzer Lichtblitze. Preis und Aufwand dieser Geräte haben bisher eine Massenanwendung verhindert. Mit dem neuen System der Bochumer und Braunschweiger Ingenieure lassen sich vielversprechende Märkte erschließen. In der Medizin z. B. könnte die Terahertz-Strahlung in manchen Bereichen die gesundheitsgefährdende Röntgenstrahlung ablösen.

Weitere Informationen

Dipl.-Phys. Stefan Hoffmann, Arbeitsgruppe Werkstoffe in der Mikroelektronik, Fakultät für Elektrotechnik und Informationstechnik der RUB; IC 2/156, Tel. 0234/32-26514, E-Mail: stefan.hoffmann@rub.de

Media Contact

Dr. Josef König idw

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer