Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Lunge der Brennstoffzelle

01.04.2003


So umweltfreundlich Brennstoffzellen auch sein mögen - wie bei jeder anderen Energiequelle wird ihr Markterfolg neben dem Einsatzgebiet vor allem vom Preis diktiert. Bis zur kostengünstigen Massenfertigung der verschiedenen Systeme sind noch einige technologische Hürden zu nehmen. Beispiel Bipolarplatten, auf die derzeit bis zur Hälfte der Gesamtkosten von PEM-Brennstoffzellen entfallen: Durch die eingeprägten oder -gefrästen Bahnen dieser Platten strömen die Zu- und Abgase einer Brennstoffzelle wie in der Lunge. Zum Stack aufeinander gestapelt müssen sie analog zur Reihenschaltung von Batterien den Kontakt zwischen benachbarten Zellen gewährleisten. Also kommen nur Materialien in Frage, die elektrisch leitfähig sind. Stähle und viele andere Metalle eignen sich jedoch nur bedingt, da sie den korrosiven Bedingungen bei Temperaturen von bis zu 100 °C nicht lange genug widerstehen. Graphit hat den Nachteil, einzeln (und daher teuer) mit spanenden Verfahren verarbeitet werden zu müssen. Einen Ausweg bieten Heißpressen und Spritzguss, wie sie in der Kunststoffverarbeitung etabliert sind.


Die Gas führenden Kanäle von Bipolarplatten können ganz unterschiedlich geformt sein. Für eine kostengünstige Serienfertigung lassen sich nun Verfahren der Kunststoffverarbeitung einsetzen.
© Fraunhofer ICT



»Stellen Sie sich vor, Sie müssten mit einem Teig, der aus einem Kilo Mehl und zwei Eiern besteht, Waffeln backen!«, strapaziert Axel Kauffmann vom Fraunhofer-Institut für Chemische Technologie ICT Phantasie und Kochkunst. »Auch wenn wir statt dessen Graphitpulver oder Leitruß und als Bindemittel thermoplastische Kunststoffe verwendeten - das Resultat sieht wohl ähnlich bröselig aus. Erhöht man den Anteil der Polymere, wird der Teig zwar dünnflüssiger und kann besser verarbeitet werden, doch gleichzeitig nimmt die elektrische Leitfähigkeit ab.« Mittlerweile haben die Forscher diese und viele andere Probleme überwunden. Nun ist es möglich, Bipolarplatten mit den beiden Verfahren kostengünstig und serienmäßig herzustellen. Zwar erreicht die Leitfähigkeit noch nicht die von kompaktem Graphit, doch ist sie für kleinere Brennstoffzellen ausreichend.



An der Fraunhofer-Initiative Mikrobrennstoffzelle, die auf der Hannover Messe in Halle 13 am Stand G 72 vertreten ist, beteiligen sich sieben Fraunhofer-Institute. »Neben den Technologien, die unsere Kollegen vom ICT untersuchen und entwickeln, kommen zur Fertigung von Bipolarplatten noch viele weitere in Betracht«, betont Reiner Borsdorf vom Fraunhofer-Institut für Produktionstechnologie IPT in Aachen. »Es hängt ganz vom Design und Material ab, welche sich zuletzt als die geeignete erweist.« Für Auswahl und Auslegung der Fertigungs- und Montageschritte ist das IPT die richtige Adresse.

Ansprechpartner:
Dipl.-Ing. Axel Kauffmann
Telefon 07 21 / 46 40-4 25
Fax 07 21 / 46 40-1 11

Fraunhofer-Institut für Chemische Technologie ICT
Joseph-von-Fraunhofer-
Straße 7
76327 Pfinztal / Berghausen


Dipl.-Ing. Reiner Borsdorf
Telefon 02 41 / 89 04-1 32
Fax 02 41 / 89 04-61 32

Fraunhofer-Institut für Produktionstechnologie IPT
Steinbachstraße 17
52074 Aachen

Dr. Joh. Ehrlenspiel | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.ise.fhg.de/german/fields/wisa/mb/german/index.html
http://www.ipt.fraunhofer.de/
http://www.ict.fraunhofer.de/deutsch/index.html

Weitere Berichte zu: Bipolarplatte Brennstoffzelle Produktionstechnologie

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Stromindikatorklemmen mit Push-in-Anschluss
24.07.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Leiterplatten-Steckverbinder werkzeuglos montieren
24.07.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Assistenzsysteme für die Blechumformung

28.07.2017 | Maschinenbau

Ruckartige Bewegung schärft Röntgenpulse

28.07.2017 | Physik Astronomie

Satellitendaten für die Landwirtschaft

28.07.2017 | Informationstechnologie